Magnus Kandler, M.Sc.

  • 76131 Karlsruhe
    Kaiserstraße 12

Magnus Kandler, M.Sc.

Area of Research:

  • Digital shopfloor management
  • Human-centred design of production systems
  • Future workplace - acceptance of industry 4.0
  • Lean Management and Industry 4.0


General Tasks:

  • Learning Factory on Global Production „Leadership 4.0“ and “Agile global production networks”
  • Coordination of lecture „Integrated Production Planning in the Age of Industry 4.0“
  • Contact Expert Forum "Lean enabled by Industry 4.0



  • teamIn: Digital leadership and technologies for the team interaction of tomorrow
  • ShopFloorPulse: Targeted use of real-time data-based key figures in shop floor management
  • Competence Center KARL „Work Research - Artificial Intelligence for Work and Learning in the Karlsruhe Region“


  • Shopfloor management - enabling decentralised decisions in production by encouraging employee acceptance



since 02/2019 Research Associate at the Institute of Production Science (wbk) at Karlsruhe Institute of Technology (KIT)
10/2011 - 12/2018 Study of Industrial Engineering and Management at the Karlsruher Institute of Technology (KIT)
10/04/1992 Born in Titisee-Neustadt



[ 1 ] Liebrecht, C.; Kandler, M.; Lang, M.; Schaumann, S.; Stricker, N.; Wuest, T.; Lanza, G. & , . (2020), "Decision support for the implementation of Industry 4.0 methods - ", Journal of Manufacturing Systems.
The economically successful implementation of Industry 4.0 methods in industrialcompanies requires a structured introduction process. The main objective of such astructured implementation process is the case-specific analysis and evaluation ofavailable Industry 4.0 methods to select the most suitable ones for an individualcompany. The presented methodology aims to establish a financial, strategic, andbenefit-oriented evaluation approach for Industry 4.0 methods to assess their potential.The core of our methodology is a general Industry 4.0 toolbox providing a structuredclassification of different methods. In the first phase, a limited set of Industry 4.0methods is derived from the toolbox by classification into production typologies. In thesecond phase, all Industry 4.0 methods of the derived set are strategically assessed aswell as evaluated from a monetary perspective. The evaluation of the methods isbased on company-specific characteristics, its strategic focus, and its (market)environment. Based on this evaluation, we develop specific, value-addingimplementation scenarios. In the third phase, the identified implementation scenarioswith their specific order of prioritized methods are simulated in a System Dynamicsmodel. The three phases ultimately result in a recommendation for a company-specificIndustry 4.0 implementation roadmap

[ 2 ] Kandler, M.; Kurtz, J. J.; Stricker, N. & Lanza, G. (2020), "Digitales, Agiles Management auf dem Shopfloor", Zeitschrift für wirtschaftlichen Fabrikbetrieb, pp. 23-26. 10.3139/104.112241
Mittels Industrie 4.0 und Digitalisierung werden dezentrale Entscheidungen und kurze Regelkreise möglich. Allerdings überwiegen in den Unternehmen starre, hierarchische Organisationsstrukturen, welche der Dezentralität komplementär entgegenstehen. Um zukünftig das Potenzial nutzen zu können, sind agile Strukturen und neue Führungssysteme in der Produktion erforderlich. Es bedarf eines Ansatzes, der ein digitales, agiles Management der Produktion ermöglicht und das Lean Leadership ergänzt.

[ 3 ] Kandler, M.; Lanza, G. & Krahe, C. (2020), "Development of a Human-centered Industry 4.0 Philosophy". New Developments in Sheet Metal Forming, pp. 123-135.
Industry 4.0 is increasingly finding its way into production. New technologies and instruments are increasingly changing production processes and, in particular, production work. New instruments to support employees make it possible to increase labour productivity, which is a key factor contributing to economic growth. While at the beginning the benefits were unclear and the investment strategy was missing, today the lack of acceptance and unsuitable organizational structures in the companies are the biggest obstacles. This is reminiscent of the first failure of Lean Management. Only after several years with the anchoring of Lean principles as a philosophy and a sustainable improvement culture, Lean Management was successful. What is needed is an approach that involves employees in incremental process improvements using Industry 4.0 in order to support the acceptance. To develop this approach, the respective success factors of Lean Management and Industry 4.0 are first studied and then combined to form an integrated process optimization approach. The result is a human-centred optimization approach that promotes an increased acceptance of Industry 4.0 and supports employees in coping with future flexible work content.

[ 4 ] Kandler, M.; Schwab, D.; Lutzi, O.; Hoben, M.; Kuhnle, A. & Lanza, G. (2021), "Shopfloor Management ? Enabler dezentraler autonomer Montageteam", Industrie 4.0 Management, pp. 35-40.

[ 5 ] Kandler, M.; Schäfer, L.; Gorny, P. M.; Ströhlein, K.; Lanza, G. & Nieken, P. (2021), "Learning Factory Labs as Field-in-the-Lab Environments".
A central challenge in the implementation of digitalisation and Industry 4.0 in companies is the human-centred development and design of the new technologies. These technologies have a major impact on the way people work and thus also on the motivation and satisfaction of employees. A thorough understanding of underlying drivers of employees' technology acceptance and possible resistance to change is crucial for a successful implementation of such technologies. Experimental economic research methods comprise a way to record the effects on human behaviour and working methods allowing for causal evidence. Controlled laboratory conditions offer the option to vary only individual variables and measure their influence on human behaviour, motivation, satisfaction, or working methods. In contrast to standard computer labs, learning factories offer the possibility to carry out experiments in a real production environment and thus observing behaviour in real work tasks in a realistic environment. This leads to increased external validity while at the same time the strict experimental protocol still allows making causal claims. Learning factories so far do not fulfil laboratory requirements. We first outline the prerequisites for the execution of empirical experiments. We then introduce our research concept, based on the example of the Learning Factory Global Production of wbk. The goal of this paper is to create an environment that allows collecting empirical and meaningful research data in a learning factory. Finally, we exemplify our concept with an experimental design on how digitalisation can foster decentralised decision-making. This research will inform a more human-centred design of digitalisation technologies and its effects on employee behaviour.

[ 6 ] Malessa, N.; Ast, J.; Kandler, M.; Ströhlein, K.; Nyhuis, P.; Lanza, G.; Nieken, P. & , . (2021), "Digitale Führung und Technologien für die Teaminteraktion von morgen", Zeitschrift für wirtschaftlichen Fabrikbetrieb, vol. 115, pp. 540-544.
Die zunehmende Digitalisierung der Arbeitswelt stellt Führungskräfte vor neue Herausforderungen. Sie sind gefordert, den Wandel aktiv zu gestalten und dabei die Mitarbeitenden unter sich ständig verändernden Rahmenbedingungen situativ zu führen und zu motivieren. In diesem Fachbeitrag wird die Entwicklung eines Leitbildes vorgestellt, das Führungskräfte unterstützen soll, die notwendigen Rahmenbedingungen für gute Führung und soziale Interaktion in einer digitalisierten Arbeitswelt zu schaffen.

[ 7 ] Kandler, M.; May, M. C.; Kurtz, J.; Kuhnle, A. & Lanza, G. (2021), "Development of a Human-Centered Implementation Strategy for Industry 4.0 ". Towards Sustainable Customization: Bridging Smart Products and Manufacturing Systems, eds. Andersen AL. Et al., Springer, Cham, pp. 738-745. 10.1007/978-3-030-90700-6_84
Existing implementation strategies for Industry 4.0 and Digital Shopfloor Management often focus on technology. This is accompanied by a lack of transparency regarding production processes and information structures, often preventing decentralised decision-making by employees. Thus, the implementation of I4.0 requires a socio-technical implementation approach that takes human, technology and organization into account. This work presents a model to implement Industry 4.0 combining the dimensions of people, technology and organization. The approach supports companies in adapting their socio-technical work system to include digitalisation. Taking the example of Digital Shopfloor Management, a socio-technical implementation strategy is developed and associated acceptance methods are derived. This pro-cedure ensures that the potential of Industry 4.0 can be achieved and …

[ 8 ] Kirchberger, M.; Heeger, M.; Altay, A.; Liebrecht, C.; Overbeck, L.; Kandler, M.; Lanza, G.; Voigt, C. & Franke, J. (2022), "Simulationsgestütztes Vorgehensmodell zur Realisierung einer Matrixfertigung", Zeitschrift für wirtschaftlichen Fabrikbetrieb (ZWF), vol. 117, no. 4, pp. 224-228. 10.1515/zwf-2022-1037
Die Siemens AG in Karlsruhe stellt sich den aktuellen Herausforderungen einer steigenden Produktkomplexität bei höherer Variantenvielfalt mit reduzierter Losgröße und kürzeren Produktlebenszyklen. Für die Umstrukturierung ihres Fertigungssystems zu einer „Matrixproduktion im Fluss“ wurde ein Vorgehensmodell zur Neuplanung und Umstrukturierung entworfen, welches als Leitfaden hierfür dienen soll. Unterstützt durch den Digitalen Zwilling und Simulationsstudien zeigt sich eine optimierte Modulkonfiguration für eine hochflexible Fertigung mit fahrerlosen Transportfahrzeugen. Herausforderungen wie die komplexe Fertigungssteuerung können im Lebenszyklus durch den ganzheitlichen Digitalen Zwilling unterstützt werden.