Aktuelles

Hier finden Sie alle Pressemitteilungen aus dem Jahr 2013. weiterlesen...

Neueste Publikationen

[ 1 ] Schubert, J.; End, Y.; Schulze, V. & Zanger, F. (2022), "Exploring the Applicability of Sinterjoining to Combine Additively Manufactured Ceramic Components". Procedia CIRP, Elsevier, pp. 18-23. 10.1016/j.procir.2022.10.043
Abstract
This paper examines the general applicability of sinterjoining for combining the advantages of Ceramic Injection Molding (CIM) and Additive Manufacturing (AM) as well as different AM processes. To do so, the geometric tolerance, the pre-sintering temperature and the co-sintering time are varied exemplarily on samples produced by vat photopolymerization (VPP) to minimize the force required for inserting the bodies and to maximize the degree of sintering. The results show that degrees of sintering larger 90 % can be obtained reproducibly. Thus, sinterjoining can be considered as a promising approach for combining the advantages of several ceramic manufacturing processes.

[ 2 ] Arndt, T.; Bertram, T.; Mryg, M.; Kipfmüller, M.; Kotschenreuther, J. & Schulze, V. (2022), "Drehen mit dem Roboter und mehreren Werkzeugen".
Abstract


[ 3 ] Mangold, S.; Kist, S.; Friedmann, M. & Fleischer, J. (2022), "Herstellung von Pilzmyzel Bauteilen im Faserblasverfahren".
Abstract
Einwegverpackungen aus Kunststoffen sorgen für eine große Umweltbelastung und tragen bei einer unsachgemäßen Entsorgung zur Umweltverschmutzung bei. Eine mögliche Alternative stellen biologisch abbaubare Produkte dar, welche sich immer stärker auf dem Markt etablieren. Biologische Faserverbundmaterialien sind neuartige Materialsysteme im Verpackungswesen. Ein Beispiel eines solchen Materialsystems ist ein Hanffaser-Pilzmyzel Verbund. Beim sogenannten Myzel handelt es sich um die wurzelartigen Strukturen von Pilzen. In vielen Anwendungen fehlt es an einer geeigneten Produktionstechnik, die jene Materialien industriell verarbeiten kann. Dieser Beitrag beleuchtet die Möglichkeiten das Faserblasverfahren zur Formgebung von biologischen Faserverbundmaterialien zu verwenden.

[ 4 ] Overbeck, L.; Voigtländer, S. & Lanza, G. (2022), "Optimal line configurations for agile production systems for battery cell manufacturing".
Abstract
Nowadays battery cells are produced in high volumes and with no customization for lower demand quantities. Since battery technology is still evolving rapidly and production systems are an expensive, long-term investment, there is a need for adaptability of the production system to changing markets and technologies. This paper presents an approach to evaluate different configurations of a highly flexible production system for battery cells in different scenarios with the help of a digital twin and the definition of optimal system configurations. This permits the definition of a change strategy on how to move from one configuration to another.

[ 5 ] Overbeck, L.; Le Louarn, A.; Brützel, O.; Stricker, N. & Lanza, G. (2022), "ComprehensiveComprehensiveComprehensiveComprehensiveComprehensiveComprehensiveComprehensiveComprehensiveComprehensiveComprehensiveComprehensiveComprehensiveComprehensive Validation Validation Validation Validation Validation Validation Validation Validation Validation Validation Validation Metrics Metrics Metrics Metrics Metrics Metrics Metrics Metrics and and and and Precise Precise Precise Precise Precise Precise Precise Precise Updating of Digital Twins Production Systems Updating of Digital Twins Production Systems Updating of Digital Twins Production Systems Updating of Digital Twins Production Systems Updating of Digital Twins Production Systems Updating of Digital Twins Production Systems Updating of Digital Twins Production Systems Updating of Digital Twins Production Systems Updating of Digital Twins Production Systems Updating of Digital Twins Production Systems Updating of Digital Twins Production Systems Updating of Digital Twins Production Systems Updating of Digital Twins Production Systems Updating of Digital Twins Production Systems Updating of Digital Twins Production Systems Updating of Digital Twins Production Systems Updating of Digital Twins Production Systems Updating of Digital Twins Production Systems Updating of Digital Twins Production Systems Updating of Digital Twins Production Systems Updating of Digital Twins Production Systems Updating of Digital Twins Production Systems Updating of Digital Twins Production Systems Updating of Digital Twins Production Systems Updating of Digital Twins Production Systems Updating of Digital Twins Production Systems Updating of Digital Twins Production Systems Updating of Digital Twins Production Systems Updating of Digital Twins Production Systems Updating of Digital Twins Production Systems Updating of Digital Twins Production Systems Updating of Digital Twins Production Systems Updating of Digital Twins Production Systems Updating of Digital Twins Production Systems Updating of Digital Twins Production Systems Updating of Digital Twins Production Systems Updating of Digital Twins Production Systems Updating of Digital Twins Production Systems Updating of Digital Twins Production Systems Updating of Digital Twins Production Systems Updating of Digital Twins Production Systems Updating of Digital Twins Production Systems Updating of Digital Twins Production Systems Updating of Digital Twins Production Systems Updating of Digital Twins Production Systems Updating of Digital Twins Production Systems Updating", Simulation Notes Europe, vol. 32, 10.11128/sne.32.3.1061
Abstract
Despite continuous improvements in modelling, software tools and data availability, simulation projects of production systems still require a lot of manual effort, exper-tise in various disciplines and time. In many projects the high initial invest for building the simulation model is followed by a rather short period of experimentation and analysis. As pro-duction systems have to be adapted at an increasing pace to respond to rapidly changing markets and business environ-ments, simulation models of these systems become outdated earlier, reducing their useful time window. One way to extend this time window would be the implementation of a method of automated comparison with the current production sys-tems and subsequent self-adaption of the model to reality to maintain and even improve its accuracy over time. This ap-proach will be presented and validated at a real world use case. Such an enhanced simulation model can be called a digital twin of the production system.