wbk

Nikolas Matkovic, M.Sc.

  • 76131 Karlsruhe
    Kaiserstraße 12

Nikolas Matkovic, M.Sc.

Area of Reaserch:

  • Lightweight Manufacturing
  • Robotic Applications
  • Additive manufacturing


General Tasks:

  • Coordination Production Techniques Laboratory


Projects:

  • Additive manufacturing of large-volume components


Curriculum Vitea:

since 11/2019

Research Associate at the Institute of Production Science (wbk) at Karlsruhe Institute of Technology

10/2018 - 04/2019 Stay abroad at the amtc of Tongji University, Shanghai
10/2012 - 07/2019

Study of Mechanical Engineering at Karlsruhe Institute of Technology (KIT)

 

Publications

[ 1 ] Matkovic, N.; Götz, M.; Kupzik, D.; Nieschlag, J.; Coutandin, S. & Fleischer, J. (2021), "Additives Roboter-Extrusions-System", VDI-Z, vol. 163, pp. 55-57. 10.37544/0042-1766-2021-01-02-55
Abstract
Herkömmliche additive Fertigungsverfahren für Kunststoffbauteile erlauben eine große Designfreiheit, besitzen jedoch Defizite hinsichtlich Fertigungszeit, Bauvolumen und Oberflächenbeschaffenheit. Zur Beseitigung dieser Defizite eignen sich insbesondere flexible Industrieroboter mit druckenden Endeffektoren. Aus diesem Grund wurde am wbk Institut für Produktionstechnik eine vollst?ndige CAE-Prozesskette zur robotergef?hrten Extrusion entwickelt und an einer Anlage erprobt.

[ 2 ] Baranowski, M.; Matkovic, N.; Friedmann, M. & Fleischer, J. (2021), " 3D-Druck für die Mobilität von morgen", pp. 807-811. 10.37544/1436-4980-2021-11-12
Abstract
Additive Verfahren besitzen das Potential den durch die Globalisierung und Digitalisierung getriebenen Trend hin zur Individualisierung und kürzeren Produktlebenszyklen wirtschaftlich zu adressieren. Insbesondere im Bereich der Mobilität ergeben sich hierbei aufgrund der hohen Volatilität besondere Herausforderungen. Um diese zu bewältigen, wird hier ein hochflexibles Anlagenkonzept zur additiv?subtraktiven Fertigung hochfunktionaler Kunststoffbauteile mit Inline?Prozessregelung vorgestellt.

[ 3 ] Mühlbeier, E.; Oexle, F.; Gerlitz, E.; Matkovic, N.; Gönnheimer, P. & Fleischer, J. (2022), "Conceptual control architecture for future highly flexible production systems". Procedia CIRP Volume 106, Elsevier, pp. 39-44. 10.1016/j.procir.2022.02.152.
Abstract
The trend towards more customized products with shorter product life cycles requires rethinking of current production systems. Due to the increasing demands for flexibility and adaptability, agile state of the art production systems come close to their limits. To improve adaptability to volatile markets, the fundamental concepts of production systems must be reviewed. With the novel production system Wertstromkinematik, the limits of flexibility and agility will be pushed further. By using several units of an identical universal robot kinematic with suitable end effectors, complete versatile value streams can be mapped. In this paper a conceptual control architecture for this novel production concept is presented and discussed in four different test environments. These examined environments comprise the core functions of the new production concept coupling of robot kinematics and machine self-optimization as well as two use cases involving the use of digital CAD-CAM-chains will be discussed in detail. Based on these topics possible restrictions and solutions regarding the overall communication architecture will be presented and discussed.

[ 4 ] Matkovic, N.; Kupzik, D.; Steidle-Sailer, C.; Friedmann, M. & Fleischer, J. (2022), "Novel Robot-Based Process Chain for the Flexible Production of Thermoplastic Components with CFRP Tape Reinforcement Structures". Procedia CIRP Volume 106, Elsevier, pp. 21-26. 10.1016/j.procir.2022.02.149
Abstract
A process for flexible preforming of thermoplastic CFRP tapes strips has been implemented at wbk Institute of Production Science. An overview of the preforming process and the approach for the further processing of the preformed strips by additive manufacturing (AM) are presented in this paper. The combination of the novel preforming process and the future AM processing results in a fully flexible process chain for fiber reinforced components. The novel, robot-bending based process is used to manufacture near-net shape preforms for reinforcement structures with a high accuracy. First, possible angles, the bending parameter selection and the obtainable accuracy are described. Afterwards, a toolbox for deriving a process compliant reinforcements shape from the target geometry is presented. Required parameters, such as bending angles, are automatically derived using shape analysis and evolutionary optimization. The second step after preforming the strips is their assembly to a reinforcement structure and subsequently a component. To maintain the flexibility, molding shall be replaced or complemented by AM techniques. In this paper, a projected overall process chain is presented as well as results of the processing of the strips in AM. AM and a local consolidation unit are used to join the strips. The first step of joining consists of aligning the strips to each other and to the components. The AM process is used to apply additional layers and to join structures to the strips and components. For the production of a tough material bond, the printed layers and strips are selectively heated and pressed together with a local consolidation unit. Various strategies and suitable process parameters for joining are experimentally identified. In combination with a second collaborating robot, this opens up new approaches for joining preforms to reinforcement structures and for fiber reinforcement in AM. Furthermore, possible applications of this process are presented.