Home | english  | Impressum | Datenschutz | Sitemap | KIT

Neueste Publikationen

[ 1 ] Schlagenhauf, T.; Hillenbrand, J.; Klee, B. & Fleischer, J. (2019), „Integration von Machine Vision in Kugelgewindespindeln“, wt Werkstattstechnik online, S. 605-610.
Unvorhergesehene Maschinenausfälle von Werkzeugmaschinen durch natürlichen Verschleiß sind häufig auf den Kugelgewindetrieb zurückzuführen. Für eine frühzeitige Erkennung der auftretenden Schäden, präsentiert dieser Beitrag einen Ansatz für die Überwachung von Spindeln von Kugelgewindetrieben mittels integriertem Kamera - system. Ziel ist die frühzeitige Detektion von Schäden, die auf der Spindeloberfläche erscheinen, um entsprechende Wartungsmaßnahmen abzuleiten.

[ 2 ] Gönnheimer, P.; Kimmig, A.; Mandel, C.; Stürmlinger, T.; Yang, S.; Schade, F.; Ehrmann, C.; Klee, B.; Behrendt, M.; Schlechtendahl, J.; Fischer, M.; Trautmann, K.; Fleischer, J.; Lanza, G.; Ovtcharova, J.; Becker, J. & Albers, A. (2019), „Methodical approach for the development of a platform for the configuration and operation of turnkey production systems“. Procedia CIRP, Hrsg. Putnik, G., S. 880-885.
Shorter product lifecycles lead not only to faster time-to-market for products but also to the need for just as fast available associated production systems. These shorter product lifecycles, as well as the increasing individualization of products, also result in further decreasing production lot sizes. Young companies in China in particular are characterized by a very high speed of innovation but may not have the necessary manufacturing knowledge or capacities to bring their developed products to the market with a scalable production. For this reason, there is a great need to quickly set up and commission turnkey production systems or to reconfigure existing production systems for new production tasks in the shortest possible time. This paper describes the design and architecture of a cloud platform with the aim to support a manufacturer independent design process for turnkey production systems. This process ranges from the product to be manufactured to the operation of the production system. Firstly, the structure and methodology used to link the various objectives are discussed. The system for recording and structuring product and production system data to create reusable modules from components and machines is described. Subsequently, the use of standardized modules is developed to support reconfiguration of the production system during operation. In addition, the digital business models tailored to the production system are proposed to the platform user for commissioning and operation of the plant. A case study is conducted to validate the proposed methodology.

[ 3 ] Treber, S.; Breig, R.; Kentner, M.; Häfner, B. & Lanza, G. (2019), „Information Exchange in Global Production Networks: Increasing Transparency by Simulation, Statistical Experiments and Selection of Digitalization Activities“. Procedia CIRP, Hrsg. Elsevier, S. 225-230.
Today, companies of all industries are part of global production networks. They have a variety of performance relationships with suppliers and customers. Digitalization offers the potential to exchange more information between the partners of global production networks. This may improve operational performance. Especially within the three business processes order management, quality problem solving and engineering change management, a targeted increase in transparency promises a better handling of disruptions and an increase in robustness. This paper presents a simulation-based methodology for modeling production and business processes as well as information exchange in global production networks. Following the principles of Design of Experiment (DoE), screening test plans first carve out the impact of disruptions and information exchange on the performance of the production network. This is followed by the determination of the disruption-robust information exchange using Taguchi-experiments. Starting from the actual state of information exchange, digitalization activities to increase transparency are finally determined. The activities consist of the implementation of digitalization technologies and the stronger linkage of information systems. The paper ends with an application of the methodology to a global production network for plastic-metal components in the automotive supplier industry.

[ 4 ] Yang, S.; Schrage, J.; Haefner, B. & Lanza, G. (2019), „Development of a regionalized implementation strategy for smart automation within assembly systems in China“. 80, Hrsg. Procedia CIRP, S. 723-728.
Companies struggle to overcome the difficulties stemming from the dynamic environment of global production due to the specific conditions in different regions. Particularly, insufficient know-how about a regionalized implementation strategy of smart automation (SmAu) technologies is one significant difficulty for enterprises. Thus, developing a key performance indicator (KPI) oriented, regionalized implementation strategy for smart automation technologies is increasingly important. In this context, a new approach is exposed to systematically investigate and identify the interdependencies among location factors, smart automation technologies, and KPIs. Firstly, the environment consisting of location-related factors, KPIs and smart automation technologies is defined in detail. Further, a Catalog quantifies the influence of different regions in China. Secondly, important aspects to model the qualitative and quantitative interdependencies in a multimethod simulation are introduced. Subsequently, an approach to analyze suitable implementation strategies is presented. A case study based on a production line for digitalized production technology is used to validate the proposed approach.

[ 5 ] Zanger, F.; Kacaras, A.; Neuenfeldt, P. & Schulze, V. (2019), „Optimization of the stream finishing process for mechanical surface treatment by numerical and experimental process analysis“, CIRP Annals - Manufacturing Technology, S. 373-376.
The stream finishing process represents an efficient mass finishing process capable in mechanical surface modification. In order to generate a deeper understanding of the cause-effect relationships, normal forces, material removal and surface topography were analyzed and correlated for varied process parameters of disc-shaped AISI 4140 specimens. Local resolution of tangential velocities of the particles and normal forces on the workpiece’s surface were simulated using the discrete element method for defined process parameter configurations and were correlated with experimental results. A deep process understanding is accomplished enabling the process design for efficient surface smoothing and improved residual stress depth distribution.

Weitere Publikationen finden Sie hier: