

© Bramsiepe / KIT

BESCHREIBUNG

Die Wiederverwendung von Komponenten hilft, kostbare Ressourcen zu schonen, und stellt damit einen essenziellen Schritt zur Kreislaufwirtschaft dar.

Robotische Demontage ermöglicht es, diese arbeitsintensive Aufgabe zu automatisieren, steht jedoch noch vor vielen ungelösten Fragen.

Eine dieser Fragen ist, wie man mit nachgiebigen Komponenten umgeht.

Existierende Planungsalgorithmen sind derzeit nicht in der Lage, selbstständig die Wirkweise dieser *Compliance Mechanisms* zu verstehen und einzubinden.

Diese Arbeit soll einen ersten Schritt zur vollautonomen Demontage von *Compliance Mechanisms* machen.

Für die Demontageplanug ist ein Modell für *Compliance Mechanisms* essentiell. Hierfür sollen mögliche Modelle und Approximationen ermittelt werden.

Beispiele von Compliance Mechanisms

AUFGABEN

- Literaturrecherche: Es gibt verschiedene Ansätze, Compliance Mechanisms zu modellieren. Es soll verschiedene Ansätze analysiert und bewertet werden, um eine begründete Auswahl zu ermöglichen.
- Modellierung: Ziel ist es, das ermittelt Modell umzusetzen und in den bestehenden Demontageplaner zu integrieren.
- Validierung: Der erweiterte Demontageplaner soll anhand eines PoC auf seine Stärken und Schwächen untersucht werden.

WEITERE INFORMATIONEN

Beginn: Nach Absprache

Fachrichtung: Maschinenbau, Robotik,

Informatik, Elektrotechnik,

Physik u.ä.

KONTAKT

Betreuer: Simon Otto, M.Sc.

Webseite: Simon Otto

E-Mail: <u>simon.otto@kit.edu</u>
Tel.: +49 1523 9501234
Gebäude: 70.16, Raum 002