Michael Baranowski, M.Sc.

  • 76131 Karlsruhe
    Kaiserstraße 12

Michael Baranowski, M.Sc.

Area of Research:

  • Laser-sintering process (LS) for polymers
    • Automated Integration of continuous fibres
    • Machine development
    • Process characterization
    • Process modelling
  • Hybridization of Fused Filament Fabrication (FFF)
    • Machine development
    • Process chain development (additive-subtractive)
    • Robot-based integration of functional components (metal inserts, sensors)
    • Process characterisation
    • Control architecture
    • Handling and gripping technology
  • Flexible machine connection

    • Connection of new types of additive manufacturing machines to the Industry 4.0 network

    • Development of process-specific dashboards

    • Process monitoring and control

    • Process data management

General Tasks:


  • Innovationscampus (Pilotproject AM2) – Productivity scaling and additive manufacturing processes for functionally integrated polymer components
  • FiberAdd – Additive manufacturing of continuous fibre reinforced polymer components from the SLS process
  • Innovationscampus (AddiMoT)  - Additive-subtractive manufacturing of multi-material sensor-integrated components of electrical machines for e-mobility using the example of the transversal flux machine

Machines and test benches:

  • Laser sintering machine with automated continuous fibre integration

  • FFF multi-material printer (4 axes) with milling module and handling robot

  • Sintratec Kit

  • Ultimaker 2+

Curriculum Vitae:

since 05/2019 Research Associate at the Institute of Production Science (wbk) at Karlsruhe Institute of Technology (KIT)
04/2017 - 03/2019 Master degree course in production engineering at the University of Ilmenau
10/2013 - 03/2017 Bachelor degree course in production engineering at the Furtwangen University (HFU) - Tuttlingen Campus
09/2009 - 07/2012 Vocational training as tool mechanic at Aesculap AG in Tuttlingen



[ 1 ] Moll, P.; Pirrung, F.; Baranowski, M.; Coutandin, S. & Fleischer, J. (2020), "Evaluation of Fiber Placement Strategies for the Implementation of Continuous Reinforcement Fibres in Selective Laser Sintering". SAMPE 2020 Virtual Series Additive Manufacturing, https://www.nasampe.org/store/viewproduct.aspx?id=16279293
Among engineering materials today continuous fiber reinforced polymers (FRP) show some of the highest stiffness and strength to weight ratios. To rival the traditional manufacturing methods of continuous FRP many investigations have sought to combine the outstanding mechanical performances of these materials with the freedom in design and the economic benefits of additive manufacturing (AM). This paper focuses on the fiber placement strategies and their interaction with Selective Laser Sintering (SLS) specific machine features. The goal is to develop and conduct test series to gain a deeper understanding of how the process, the polymer, and the reinforcement fibers interact. For this investigation different patterns of glass fiber rovings are embedded into specimens made from PA 12 on a Sintratec Kit printer. The rovings are put up onto a frame in varying patterns to be able to relate fiber tension and curvature as well as the stack height of intersecting rovings to the quality of embedding. Additionally the time of placement, the clamping and the interaction of the fibers with the recoater have been investigated. Based on these results an SLS printer with automated continuous fiber implementation will be developed in the future.

[ 2 ] Baranowski, M.; Moll, P.; Coutandin, S.; Fleischer, F. & Jürgen, J. (2020), "SLS-Prozess für endlosfaserverstärkte Kunststoffbauteile", VDI-Z Integrierte Produktion, vol. 162, no. 5, https://www.ingenieur.de/fachmedien/vdi-z/additive-fertigung/sls-prozess-fuer-endlosfaserverstaerkte-kunststoffbauteile/
Additive Fertigungsverfahren erlauben ohne die Grenzen herkömmlicher Werkzeuge eine nahezu unbegrenzte Designfreiheit. Zur Steigerung von Produktlebenszyklen werden bereits Hybridisierungskonzepte durch Integration von Verstärkungsfasern erforscht. Im vorgestellten Forschungsprojekt wird eine Prototypenanlage entwickelt, mit der sich Endlosfasern in das selektive Lasersintern (SLS) von Kunststoffbauteilen automatisiert integrieren lassen.

[ 3 ] Baranowski, M.; Netzer, M.; Coutandin, S. & Fleischer, J. (2020), "Produktivitätssteigerung durch Hybridisierung im 3D Druck", wt Werkstattstechnik online , no. 7, pp. 521-526. doi.org/10.37544/1436-4980-2020-07-08-65
Die additive Fertigung erlaubt eine standortunabhängige sowie de facto individualisierte Produktion von Bauteilen mit nahezu beliebiger Komplexität. Für die flexible Herstellung von hochfunktionalen Hybridbauteilen fehlt es allerdings an entsprechenden Maschinenkonzepten sowie Automatisierungslösungen. Durch ein hier vorgestelltes Anlagenkonzept sollen Funktionskomponenten in den additiven Herstellungsprozess integriert und neue Möglichkeiten der Bauteilhybridisierung erforscht werden.

[ 4 ] Baranowski, M.; Schlotthauer, T.; Netzer, M.; Gönnheimer, P.; Coutandin, S.; Fleischer, J. & Middendorf, P. (2021), "Hybridization of Fused Filament Fabrication Components by Stereolithographic Manufactured Thermoset Inserts" in Recent Advances in Manufacturing Engineering and Processes, eds. Ramesh K. Agarwal, Springer, pp. 03-14. ISBN/ISSN: 978-981-16-3933-3
The abstract is published online only. If you did not include a short abstract for the online version when you submitted the manuscript, the first paragraph or the first 10 lines of the chapter will be displayed here. If possible, please provide us with an informative abstract. One of the main advantages of additive manufacturing by fused filament fabrication is its wide variety of materials and cost-effective production systems. However, the resolution and tightness of the produced structures are limited. The following article describes a novel approach of the functional integration of stereolithographic produced subcomponents into the fused filament fabrication process and the challenges during integration in terms of adhesion, taking into account different surface pre-treatments. With the help of these investigations, it is aimed to extend the field of application of additive manufactured plastic components.

[ 5 ] Baranowski, M.; Beichter, S.; Griener, M.; Coutandin, S. & Fleischer, J. (2021), "Additive manufacturing of continuous fibre-reinforced plastic components by a novel laser-sintering process". Proceedings SE Conference 21 Baden / Zürich.
Today among engineering materials, continuous fibre reinforced polymers (CFRP) show high stiffness and strength to weight ratios. To rival the traditional manufacturing methods of CFRP, many investigations have sought to combine the outstanding mechanical performances of these materials with the freedom in design and the economic benefits of additive manufacturing (AM). This paper focuses on a novel laser-sintering machine which enables the integration of continuous fibres into the laser-sintering process as well as the identification of influencing parameters for this new process. Firstly, the principle of fibre roving integration is presented. With the help of a heated nozzle, the already sintered layers are melted. A simultaneous motion sequence between the nozzle and the fibre feed is used to insert the fibre into the molten material. Secondly, machine- and process-related parameters are identified which have an influence on the fibre integration. By using an influence analysis, the parameters will be investigated and parameter sets for a successful fibre integration will be found. The identified parameters are to be used for future investigations. The results of this paper show the potential of continuous fibre integration in the laser-sintering process based on measured tensile properties.

[ 6 ] Baranowski, M.; Matkovic, N.; Friedmann, M. & Fleischer, J. (2021), " 3D-Druck für die Mobilität von morgen", pp. 807-811. 10.37544/1436-4980-2021-11-12
Additive Verfahren besitzen das Potential den durch die Globalisierung und Digitalisierung getriebenen Trend hin zur Individualisierung und kürzeren Produktlebenszyklen wirtschaftlich zu adressieren. Insbesondere im Bereich der Mobilität ergeben sich hierbei aufgrund der hohen Volatilität besondere Herausforderungen. Um diese zu bewältigen, wird hier ein hochflexibles Anlagenkonzept zur additiv?subtraktiven Fertigung hochfunktionaler Kunststoffbauteile mit Inline?Prozessregelung vorgestellt.