Marco Friedmann

Marco Friedmann, M.Sc.

  • 76131 Karlsruhe
    Kaiserstraße 12

Marco Friedmann, M.Sc.

Area of Research:

  • Modularization of gripping systems
  • Modular concepts for handling systems
  • Solutions for automation and sensor based gripping technologies in the fields of lightweight manufacturing


 

Publications

[ 1 ] Friedmann, M.; Nguyen Duc, H.; Coutandin, S.; Fleischer, J. & May, M. (2019), "Intelligent, konnektiv, sensitiv", handling, pp. 14-15.
Abstract
Das wbk Institut für Produktionstechnik am Karlsruher Institut für Technologie entwickelt Ansätze, um den Autonomiegrad von Greifern zu erhöhen. Die Digitalisierung beschreibt einen disruptiven Wandel von Prozessstrukturen in der Produktion, der neue Herausforderungen an die Produktion bringt– etwa eine hohe Flexibilität in den Herstellmengen, eine zunehmende Individualisierung der Produkte und eine steigende Komplexität der Produkte und Prozesse. Um diesen Herausforderungen zu begegnen, basiert die Produktion von morgen auf intelligenten, dezentral gesteuerten Komponenten und Anlagen, die sich in andauernder Selbstoptimierung dynamisch an veränderte externe Bedingungen in Echtzeit anpassen. Diese Adaption kann nur nach erfolgter Wahrnehmung der geänderten Umstände – also durch die Aufnahme und Verarbeitung sensorischer Daten sowie deren Aggregation zu Informationen – erfolgen.

[ 2 ] Friedmann, M.; Köse, H.; Roth, S.; Wirth, B.; Coutandin, S. & Fleischer, J. (2020), "Werkstückerkennung mit Greifsystemen", Robotik und Produktion, no. 5, pp. 32-33.
Abstract
Bereits heute wird eine Fülle an Daten entlang der Wertschöpfungskette erhoben und stellenweise bereits z.B. zur Prozessüberwachung genutzt. Das Ziel dieser Entwicklung sind autonome Fertigungssysteme, die eine flexible Automatisierung unabhängig von der Losgröße ermöglichen und damit für eine hohe Produktivität sorgen. In diesem Kontext werden am wbk Institut für Produktionstechnik des Karlsruher Institut für Technologie Möglichkeiten zur Steigerung der Autonomie von Handhabungssystemen, z.B. durch eine Werkstückklassifizierung mit Hilfe der Methoden künstlicher Intelligenz, erforscht.

[ 3 ] Baranowski, M.; Matkovic, N.; Friedmann, M. & Fleischer, J. (2021), " 3D-Druck für die Mobilität von morgen", pp. 807-811. 10.37544/1436-4980-2021-11-12
Abstract
Additive Verfahren besitzen das Potential den durch die Globalisierung und Digitalisierung getriebenen Trend hin zur Individualisierung und kürzeren Produktlebenszyklen wirtschaftlich zu adressieren. Insbesondere im Bereich der Mobilität ergeben sich hierbei aufgrund der hohen Volatilität besondere Herausforderungen. Um diese zu bewältigen, wird hier ein hochflexibles Anlagenkonzept zur additiv?subtraktiven Fertigung hochfunktionaler Kunststoffbauteile mit Inline?Prozessregelung vorgestellt.

[ 4 ] Matkovic, N.; Kupzik, D.; Steidle-Sailer, C.; Friedmann, M. & Fleischer, J. (2022), "Novel Robot-Based Process Chain for the Flexible Production of Thermoplastic Components with CFRP Tape Reinforcement Structures". Procedia CIRP Volume 106, Elsevier, pp. 21-26. 10.1016/j.procir.2022.02.149
Abstract
A process for flexible preforming of thermoplastic CFRP tapes strips has been implemented at wbk Institute of Production Science. An overview of the preforming process and the approach for the further processing of the preformed strips by additive manufacturing (AM) are presented in this paper. The combination of the novel preforming process and the future AM processing results in a fully flexible process chain for fiber reinforced components. The novel, robot-bending based process is used to manufacture near-net shape preforms for reinforcement structures with a high accuracy. First, possible angles, the bending parameter selection and the obtainable accuracy are described. Afterwards, a toolbox for deriving a process compliant reinforcements shape from the target geometry is presented. Required parameters, such as bending angles, are automatically derived using shape analysis and evolutionary optimization. The second step after preforming the strips is their assembly to a reinforcement structure and subsequently a component. To maintain the flexibility, molding shall be replaced or complemented by AM techniques. In this paper, a projected overall process chain is presented as well as results of the processing of the strips in AM. AM and a local consolidation unit are used to join the strips. The first step of joining consists of aligning the strips to each other and to the components. The AM process is used to apply additional layers and to join structures to the strips and components. For the production of a tough material bond, the printed layers and strips are selectively heated and pressed together with a local consolidation unit. Various strategies and suitable process parameters for joining are experimentally identified. In combination with a second collaborating robot, this opens up new approaches for joining preforms to reinforcement structures and for fiber reinforcement in AM. Furthermore, possible applications of this process are presented.

[ 5 ] Friedmann, M. & Fleischer, J. (2022), "Automated Configuration of Modular Gripper Fingers". Procedia CIRP Volume 106, Elsevier, pp. 70-75. 10.1016/j.procir.2022.02.157
Abstract
The trend of individualization of demand presents companies with the challenge of preparing their production, on the one hand, for ever more extensive and complicated products, but on the other hand also an increasing variety of products. Handling, as a component of any automated process, plays an essential role in this context, since these non-value-adding process steps must run reliably and quickly, even for workpieces with a large number of variants. The performance of a handling system depends on the adaptation of the gripper’s fingers to the respective workpiece since the fingers are the only components that have direct contact with the workpiece. Since the change of the gripper, as well as the production of new gripper fingers for adaptation, is time-consuming, modular gripper fingers are increasingly coming into focus. An overview of a holistic approach for the selection and dimensioning of gripper fingers from modules is presented in this paper. First, the requirements for gripper fingers are determined and converted into functions. Based on this, the overall structure of gripper fingers is broken down into modules according to technical and functional aspects. In the sense of variant-oriented product design, concepts for modules are developed, which are then designed together with the interfaces between the finger modules and between the finger and gripper. Gripping points with sufficient contact area on workpieces are determined with a gripping point determination. Based on the developed construction kit of gripper fingers for mechatronic parallel grippers and the characteristics of the handling objects as well as the determined gripping points, a method is then described that allows an automated configuration of gripper fingers with integrable sensors for a given number of workpieces.