Home | deutsch  | Legals | Data Protection | Sitemap | KIT
Christopher_Ehrmann

Dipl.-Ing. Christopher Ehrmann

Group leader industrial projects amtc
department: Machines, Equipment and Process Automation
office hours: to be agreed
room: Jiren Building
phone: +86 182 2137 4597
Christopher EhrmannRdl4∂partner kit edu

4800 Cao An Road, Jiading District
 
Shanghai 201804
P.R. China


Dipl.-Ing. Christopher Ehrmann

Areas of Research:

  • Mechatronic subsystems for machine tools
  • Diagnosis and prognosis of rack & pinion drives

Publications

[ 1 ] Ehrmann, C. & Herder, S. (2013), "Integrated Diagnostic and Preload Control for Ball Screw Drives by Means of Self-Sensing Actuators". Advanced Materials Research, eds. M. Merklein, pp. 271-277.
Abstract:
Piezoelectric ceramics can be used as sensors, as well as actors. The concept of a selfsensing actuator tries to use both modes of operation in one device, allowing the economic integration of mechatronic systems. Possible fields of application are ball screws of machine tools, where wear-induced degradation of the preload can be compensated. Furthermore, the signal processing part of such a system can be used to gather information related to the condition of the ball screw. Both excitation signal generation and filtering of the measured signal have to offer high flexibility and signal fidelity. In this article the concept of a power amplifier and its corresponding signal processing system are presented.

[ 2 ] Ehrmann, C.; Isabey, P. & Fleischer, J. (2016), "Condition Monitoring of Rack and Pinion Drive Systems: Necessity and Challenges in Production Environments". Procedia CIRP, eds. Seliger, G.; Kohl, H. & Mallon, J., pp. 197-201.
Abstract:
Rack and pinion drives are linear actuators commonly found in feed axes of machine tools and handling systems. Despite their use in demanding production environments and the possibility of failure due to foreseen or unforeseen cause, as of this writing, no condition monitoring systems are used in such applications. This paper shows the prospects of condition monitoring of rack and pinion drive systems concerning predictability of faults and saving of resources. Additionally the current state of the art of science and technology in this field and the challenges of condition monitoring of such drive systems under the circumstances of production environments are outlined. The publication concludes the need for action and gives an outlook on ongoing developments in condition monitoring of rack and pinion drives.

[ 3 ] Gönnheimer, P.; Kimmig, A.; Mandel, C.; Stürmlinger, T.; Yang, S.; Schade, F.; Ehrmann, C.; Klee, B.; Behrendt, M.; Schlechtendahl, J.; Fischer, M.; Trautmann, K.; Fleischer, J.; Lanza, G.; Ovtcharova, J.; Becker, J. & Albers, A. (2019), "Methodical approach for the development of a platform for the configuration and operation of turnkey production systems". Procedia CIRP, eds. Putnik, G., pp. 880-885.
Abstract:
Shorter product lifecycles lead not only to faster time-to-market for products but also to the need for just as fast available associated production systems. These shorter product lifecycles, as well as the increasing individualization of products, also result in further decreasing production lot sizes. Young companies in China in particular are characterized by a very high speed of innovation but may not have the necessary manufacturing knowledge or capacities to bring their developed products to the market with a scalable production. For this reason, there is a great need to quickly set up and commission turnkey production systems or to reconfigure existing production systems for new production tasks in the shortest possible time. This paper describes the design and architecture of a cloud platform with the aim to support a manufacturer independent design process for turnkey production systems. This process ranges from the product to be manufactured to the operation of the production system. Firstly, the structure and methodology used to link the various objectives are discussed. The system for recording and structuring product and production system data to create reusable modules from components and machines is described. Subsequently, the use of standardized modules is developed to support reconfiguration of the production system during operation. In addition, the digital business models tailored to the production system are proposed to the platform user for commissioning and operation of the plant. A case study is conducted to validate the proposed methodology.

[ 4 ] Barton, D.; Gönnheimer, P.; Schade, F.; Ehrmann, C.; Becker, J. & Fleischer, J. (2019), "Modular smart controller for Industry 4.0 functions in machine tools". Procedia CIRP, eds. Butala, P.; Govekar, E. & Vrabič, R., pp. 1331-1336.
Abstract:
In machine tools, Industry 4.0 functions can increase availability through predictive maintenance, while other functions improve productivity and workpiece quality through process supervision and optimisation. Many of these functions rely on data communication between systems from different suppliers. Requirements regarding latency and computing vary widely depending on the application. Based on an analysis of these requirements, a smart controller for the implementation of Industry 4.0 is designed, using a hypervisor to allow for the integration of soft real-time and best-effort applications.