Home | english  | Impressum | Datenschutz | Sitemap | KIT

M.Sc. Felix Wirth

Akad. Mitarbeiter
Bereich: Maschinen, Anlagen und Prozessautomatisierung
Sprechstunden: nach Vereinbarung
Raum: 012, Geb. 50.36
Tel.: +49 1523 9502630
Felix WirthOon6∂kit edu

76131 Karlsruhe
Kaiserstraße 12


M.Sc. Felix Wirth

Forschungs- und Arbeitsgebiete:

  • Elektromaschinenbau
  • Hairpin-Technologie

 

Allgemeine Aufgaben:

 

Projekte:

 

Versuchsstände:

 

Lebenslauf:

seit 11/2017 Wissenschaftlicher Mitarbeiter am Institut für Produktionstechnik (wbk) des Karlsruher Instituts für Technologie (KIT)
04/2017 - 08/2017 Auslandsaufenthalt am amtc der Tongji Universität, Shanghai
10/2012 - 10/2017 Studium des Maschinenbaus am Karlsruher Institut für Technologie (KIT)

 

Veröffentlichungen

[ 1 ] Hofmann, J.; Sell-Le Blanc, F.; Krause, M.; Wirth, F. & Fleischer, J. (2016), „Simulation of the Assembly Process of the Insert Technique for Distributed Windings“. Proceedings of 6th International Electric Drives Production Conference (E|DPC), Hrsg. IEEE, S. 144-148.
Abstract:
As the efficiency of electric power trains in hybrid electric vehicles should be increased and at the same time the manufacturing costs reduced, different motor designs and production concepts need to be considered. Because of the nearly sinusoidal magnetic field inside, the stator design with distributed windings, which is typically produced with the insert technique, is technically preferred. The insert technique offers a high productivity because the complete winding assembling process can be done in one step. This results in the fact, that nearly 80% of all electric motors worldwide have distributed windings. In order to enhance the possibilities for distributed windings with the insert technique, the current fill factor needs to be improved. Due to the fact that the actual wire placement cannot be measured und thus not optimized, a simulative approach with a multi-body simulation is used to understand the process interactions between the wires, the stator groove and the tool. This approach will be presented in this paper.

[ 2 ] Wirth, F.; Kirgör, T.; Hofmann, J. & Fleischer, J. (2018), „FE-Based Simulation of Hairpin Shaping Processes for Traction Drives“. 2018 8th International Electric Drives Production Conference (EDPC), Hrsg. IEEE, S. 1-5.
Abstract:
Based on the present change in mobility, there are novel requirements on production technologies of electric drives regarding process reliability, ability for automation, productivity as well as mechanical and electric filling factors. Providing significant advantages compared to conventional winding technologies, the hairpin technology combined with the usage of flat copper wire is a promising opportunity to fulfill the upcoming standards. Hence, the AnStaHa project aims the qualification of the hairpin technology for application in mass production. In spite of numerous advantages, the application of the hairpin technology also shows weaknesses. In particular, the shaping of hairpins is considerably more complex than corresponding process sequences of other winding technologies. The main reasons for this are the rectangular cross section and resulting directional properties of flat copper wires, significant springback effects as well as process-related damage of the wire insulation. Therefore, basic knowledge about the deformation behavior of the wire is required for process dimensioning within the context of system design. This paper handles the numerical simulation of hairpin shaping using the commercial finite element software suite Abaqus FEA. The FE-based approach is validated by experiments for different geometries and includes the complete forming process of hairpins, which is considered to be implemented in two following steps - U-bending and 3-D-shaping. Because the numerical analysis takes wire springback into account, the results can be used for a digital evaluation of hairpin shaping processes during the period of system design.

[ 3 ] Wirth, F.; Hausmann, L.; Halwas, M.; Hofmann, J.; Mayer, D.; Wößner, W. & Fleischer, J. (2019), „Optimierte Fertigung elektrischer Traktionsmotoren durch Technologien der Industrie 4.0“. Future Mobility: automatisiert - vernetzt - elektrisch, Hrsg. Technische Akademie Esslingen e.V., S. 1-14.
Abstract:
Striktere Emissionsvorgaben der Europäischen Union sowie die Endlichkeit fossiler Energieträger werden in der kommenden Dekade zu einem steigenden Absatz elektrifizierter Antriebsstränge führen. Damit die wachsende Nachfrage nach leistungsfähigen Traktionsmotoren sowie die hohen Anforderungen bezüglich Stückzahl und Qualität erfüllt werden können, müssen die innovativen aber vielmals noch unreifen Fertigungsprozesse für den industriellen Einsatz befähigt werden. Die Integration neuartiger Technologien der Industrie 4.0 in die Produktionskette stellt einen vielversprechenden Ansatz zur Lösung dieser Probleme dar. Durch eine digitale Prozessabsicherung können Wickelverfahren vor deren hardwareseitiger Erprobung bewertet und optimiert sowie Inbetriebnahmezeiten verkürzt werden. Zudem gestattet der digitale Zwilling sowohl eine prädiktive Prozesssteuerung als auch die isolierte Betrachtung von Einflussgrößen und darauf basierende Ableitung von Regelungsstrategien. Methoden des maschinellen Lernens und intelligente Algorithmen ermöglichen die Bewertung bislang unbekannter, produktseitiger Merkmale, wie den Lagenaufbau von Leitern in den Nuten von Blechpaketen, sowie die Einhaltung enger Qualitätsvorgaben durch angepasste Montagestrategien.

[ 4 ] Wirth, F.; Hofmann, J. & Fleischer, J. (2019), „Einfluss geometrischer Materialtoleranzen auf die werkzeuggebundene Formgebung und Eigenschaften von Hairpin-Steckspulen“, www.umformtechnik.net, S. 1-18.
Abstract:
Toleranzbedingte Schwankungen des Kupferflachdrahtes stellen eine wichtige Einflussgröße bei der Formgebung von Hairpin-Steckspulen für die Fertigung elektrischer Traktionsmotoren dar. Im vorliegenden Beitrag werden die Wechselwirkungen geometrischer Toleranzen mit den charakteristischen Eigenschaften und der Konturgenauigkeit von Hairpin-Steckspulen durch analytische und numerische Methoden am Beispiel einer werkzeuggebunden Formgebung systematisch untersucht.