Home | english  | Impressum | Datenschutz | Sitemap | KIT

M.Sc. Benjamin Bold

Akad. Mitarbeiter
Bereich: Maschinen, Anlagen und Prozessautomatisierung
Sprechstunden: nach Vereinbarung
Raum: 132, Geb. 50.36
Tel.: +49 1523 9502566
Benjamin BoldDta3∂kit edu

76131 Karlsruhe
Kaiserstraße 12

M.Sc. Benjamin Bold

Forschungs- und Arbeitsgebiete:

  • Produktionsforschung für die Elektromobilität
  • Untersuchungen am Prozessschritt Kalandrieren von Elektroden


Allgemeine Aufgaben:

  • Betreuung des Workshops ATM – Arbeitstechniken im Maschinenbau (Lehrveranstaltung)
  • Betreuung der Vorlesung „Production Systems for E-Mobility“ (Hector-School)
  • MAP Talent-Pool



  • POF III (Helmholtz)
  • HighEnergy (BEST) - Beschichtung, Trocknung und neue Stapelbildungsverfahren für High Energy Zellen




Dissertation: Optimierung des Kalandrierens von Elektroden für Lithium-Ionen-Batteriezellen



seit 04/2017 Wissenschaftlicher Mitarbeiter am Institut für Produktionstechnik (wbk) des Karlsruher Instituts für Technologie (KIT)
04/2015 - 03/2017 Studium des Maschinenbaus (M.Sc.) am Karlsruher Institut für Technologie (KIT)
10/2011 - 04/2015 Studium des Maschinenbaus (B.Sc.) am Karlsruher Institut für Technologie (KIT)


[ 1 ] Hofmann, J.; Bold, B.; Baum, C. & Fleischer, J. (2017), „Investigations on the Tensile Force at the Multi-Wire Needle Winding Process“. Proceedings of 2017 7th International Electric Drives Production Conference (EDPC), Hrsg. IEEE, S. 1-6.
The electric motor is the main component in an electrical vehicle. Its power density is directly influenced by the winding. For this reason, it is relevant to investigate the influences of coil production on the quality of the stator. The examined stator in this article is wound with the multi-wire needle winding technique. With this method, the placing of the wires can be precisely guided leading to small winding heads. To gain a high winding quality with small winding resistances, the control of the tensile force during the winding process is essential. The influence of the tensile force on the winding resistance during the winding process with the multiple needle winding technique will be presented here. To control the tensile force during the winding process, the stress on the wire during the winding process needs to be examined first. Thus a model will be presented to investigate the tensile force which realizes a coupling between the multibody dynamics simulation and the finite element methods with the software COMSOL Multiphysics®. With the results of the simulation, a new winding-trajectory based wire tension control can be implemented. Therefore, new strategies to control the tensile force during the process using a CAD/CAM approach will be presented in this paper.

[ 2 ] Bold, B. & Fleischer, J. (2018), „Kalandrieren von Elektroden für Li-Ionen-Batterien“, ZWF Zeitschrift für wirtschaftlichen Fabrikbetrieb, Nr. 9, S. 571-575. 10.3139/104.111968
Die Energiedichte ist ein entscheidendes Merkmal für Lithium-Ionen- Batteriezellen und bestimmt maßgeblich die Reichweite von elektrisch angetriebenen Fahrzeugen. Ein für die Energiedichte entscheidender Prozessschritt ist das Kalandrieren. In diesem Beitrag wird der Zusammenhang zwischen den Anlagen- und Materialparametern aufgezeigt, indem die Prozessgrößen variiert und die Veränderungen der Elektrode betrachtet werden. Mit den Ergebnissen werden Handlungsfelder aufgezeigt, die für eine Optimierung notwendig sind.

[ 3 ] Bold, B.; Weinmann, H. W. & Fleischer, J. (2018), „Challenges in conveying electrodes and new approaches to quality assurance“. Tagungsband zur International Battery Production Conference 2018, Hrsg. Prof. Arno Kwade, B. L. B., S. 56-57.
Electric mobility is gaining importance in Germany but high battery costs are still an obstacle. The production of battery cells amounts to a considerable share to the total costs and therefore efficiency must be further increased. Within the battery cell production the electrode is processed continuously as an electrode web until stack formation. In the individual process steps the material is guided via deflection rollers, including various compensation systems, which are designed to eliminate unevenness in the web tension and to align the position of the web edge. Such systems are mostly adapted from the paper or film processing industry. However, compared to paper or foil the electrode consists of a composite material consisting of active material and current collector. As a result, the electrode forms a system of complex properties since it consists of two materials with different mechanical properties. The presentation thus gives an overview over available market solutions and sets out why an adaptation is not possible without further ado. It also presents the challenges that occur within the material transport of electrodes. These include the wrap angle, roller diameter and web tension applied. With regard to the material parameters, the distortion of the electrode and the formation of folds are described. Up to now, the electrode behavior has been evaluated qualitatively as there are no measurement methods available. New approaches for optical methods are presented that enable a quantification of the electrode distortion within the electrode web. Three variants are described which show first promising results. By means of image processing and applied colored points their displacement is detected and thus how the electrode deforms in the process. Furthermore, another similar method is presented which works with a sprayed-on pattern and a software from the GOM GmbH for evaluation. Since these methods do not allow for an in-line quality evaluation a further variant is being considered in which the deformation of a laser pattern projected onto an electrode is assessed. Finally, a description of the material flexibility with respect to the measurement methods is given, as this will play an important role in the future.