Home | english  | Impressum | Datenschutz | Sitemap | KIT

M.Sc. Jonas Nieschlag

Akad. Mitarbeiter
Maschinen, Anlagen und Prozessautomatisierung
Sprechstunden: nach Vereinbarung
Raum: 128, Geb. 50.36
Tel.: +49 1523 9502603
Jonas NieschlagIad4∂kit edu

76131 Karlsruhe
Kaiserstraße 12

M.Sc. Jonas Nieschlag

Forschungs- und Arbeitsgebiete:

  • Leichtbaufertigung im Bereich der Faserverbundkunststoffe


Allgemeine Aufgaben:

  • Organisation Schwerpunktprogramm 1712 - Intrinsische Hybridverbunde für Leichtbautragstrukturen







seit 04/2017 Wissenschaftlicher Mitarbeiter am Institut für Produktionstechnik (wbk) des Karlsruher Instituts für Technologie (KIT)
2010 - 2016 Studium des Maschinenbaus an der TU Darmstadt


[ 1 ] Nieschlag, J.; Ruhland, P.; Daubner, S.; Koch, S. & Fleischer, J. (2018), „Finite element optimisation for rotational moulding with a core to manufacture intrinsic hybrid FRP metal pipes“, Produktion Engineering, Band 12, Nr. 2, S. 239-247. https://doi.org/10.1007/s11740-017-0788-6
Lightweight construction is gaining in importance due to increasing demands for energy efficiency. In drive technology, lightweight shafts can for example be produced in a centrifugal process in which dry, hollow fibre preforms are impregnated with polymer resin and cured under rotation. Furthermore, hybrid FRP-metal lightweight shafts can be produced by intrinsically incorporating additional metal load-introducing elements into the process. Due to the nature of the process, the transition between the materials may be conducted in a form-fitting way. So-called centrifugal cores are used for being able to achieve a higher fibre-volume content or produce polygonal profiles with a form fit. The cores made of a silicone-lead compound expand due to the rotational forces. The resulting pressure leads to a good impregnation of the corner areas. Compared to cylindrical centrifugal cores, polygonal ones have a more complex geometry. Designing with FEM is consequently more appropriate. Therefore, this paper shall portray finite element modelling of a polygonal centrifugal core. The challenge of this endeavour constitutes in developing a centrifugal core, which expansion executes a constant impregnation pressure via the profile onto the impregnated fibre layer. For this purpose, the centrifugal core is modelled as an elastic body in ABAQUS. Subsequently, the centrifugal core’s optimum geometry is derived with an optimisation approach. In conclusion, the calculated centrifugal cores are produced in order to be able to manufacture hybrid shafts.