wbk Institut für Produktionstechnik

Patrick Moll, M.Sc.

  • 76131 Karlsruhe
    Kaiserstraße 12

Patrick Moll, M.Sc.

Forschungs- und Arbeitsgebiete:

  • Faserblasverfahren
    • Prozessentwicklung und –modellierung
    • Erweiterung der Anlagentechnik
  • Modulare Produktionsanlagen für Hybridbauteile
    • Thermoplastische CFK-Metall-Hybridbauteile
    • Aufheizung thermoplastischer Halbzeuge
    • OPC-UA Kommunikation
    • Service-basierte Steueurngstechnik
  • Handhabungstechnik
    • Aufbau von Greifsystemen
    • Handhabung aufgeheizter thermoplastischer Halbzeuge
  • Selektives Lasersintern
    • Prozesscharakterisierung
    • Automatisierte Einbringung von Endlosfasern

 

Allgemeine Aufgaben:

 

Projekte:

  • MoPaHyb - Modulare Produktionsanlagen für hochbelastbare Hybridbauteile
  • FiberAdd - Additive Fertigung endlosfaserverstärkter Kunststoffbauteile aus dem SLS-Prozess

 

Versuchsstände:

 

Lebenslauf:

seit 09/2016 Wissenschaftlicher Mitarbeiter am Institut für Produktionstechnik (wbk) des Karlsruher Instituts für Technologie (KIT)
10/2010 - 05/2016 Studium des Maschinenbaus am Karlsruher Institut für Technologie (KIT) und der Arts et Métiers (Metz/Paris)

Veröffentlichungen

[ 1 ] Schäfer, M. & Moll, P. (2017), „Effiziente Herstellung hybrider Bauteile durch rekonfigurierbare Fertigungsanlagen“. 4. Technologietag Hybrider Leichtbau, Hrsg. Landesagentur Leichtbau Baden-Württemberg, S. 1.
Abstract
Ein vielversprechender Ansatz zur Reduzierung von CO2-Emissionen und der Steigerung der Energie- und Ressourceneffizienz ist die Herstellung von Materialkombinationen aus faserverstärkten Kunststoffen (FVK) und metallischen Elementen in der intrinsischen Hybridisierung. Dabei wird die direkte Verbindung der verschiedenen Materialien im Ur- bzw. Umformprozess erreicht. Die großserientaugliche und zugleich variantenintensive Herstellung hybrider Bauteile stellt eine erhebliche Herausforderung dar, da aktuelle Anlagen jeweils an die bauteilspezifischen Anforderungen angepasst werden. Dies führt zu unzureichender Wirtschaftlichkeit und verhindert die Herstellung von wettbewerbsfähigen Produkten. Im Rahmen des vom BMBF finanzierten Forschungsprojektes MoPaHyb wird daher ein modularer Ansatz zur Konfiguration von Produktionsanlagen entwickelt. Startpunkt für die Konfiguration einer Anlage ist hierbei ein am wbk entwickelter Modulbaukasten für Leichtbauproduktionsanlagen. In diesem stellen die Teilmodul-Hersteller alle relevanten Informationen und Schnittstellen zu ihrem Modul zur Verfügung. Im Modulbaukasten kann der Anlagenplaner dann die für die Produktion eines beliebigen hybriden Bauteils notwendigen Module auswählen und durch Verkettung derselben den Prozess gestalten. Mit Hilfe des Modulbaukastens kann so die Engineeringzeit einer Produktionsanlage deutlich verringert werden. Das Kernstück der modularen Anlage bildet das von Siemens entwickelte Basismodul, welches die Gesamtanlage steuert. Die Konfiguration aus dem Modulbaukasten kann direkt in das Basismodul importiert werden, welches hieraus die Ablaufsteuerung für die Gesamtanlage automatisch generiert. Die Kommunikation zwischen dem Basismodul und den einzelnen Modulen der Anlage erfolgt über standardisierte Schnittstellen, wobei als Kommunikationsprotokoll die OPC Unified Architecture (OPC UA) verwendet wird, welche die plattformunabhängige plug&work-fähige Kommunikation der Anlagenkomponenten gewährleistet. Die bei der Produktion erfassten Prozess- und Qualitätsdaten der Einzelmodule werden zentral im Basismodul erfasst und können für eine spätere Auswertung abgespeichert werden. Durch die Verwendung von hochtemperaturresistenten Etiketten können jedem gefertigten Bauteil seine Prozessparameter zugeordnet werden. Durch den im Projekt entwickelten Baukastenansatz bietet sich für die Industrie der Vorteil, dass eine Produktionsanlage für hybride Bauteile aus Standardmaschinen zusammengestellt werden kann. Die Modularität erlaubt dabei eine schnelle Anpassung der Anlage auf die Herstellung anderer Produkte, indem einzelne Module ausgetauscht werden. Da die Module auf standardisierte Schnittstellen und herstellerübergreifende Protokolle setzen, werden diese von der Basissteuerung sofort erkannt und sind umgehend betriebsbereit. Dies führt zur Fähigkeit unterschiedliche Bauteile zu produzieren ohne die Produktionsanlage komplett umbauen zu müssen. Die wirtschaftliche Fertigung auch kleiner Losgrößen wird so ermöglicht, wodurch sich das Anwendungsfeld hybrider Bauteile stark erweitert. Das MoPaHyb-Projektkonsortium besteht aus 11 Industriepartnern aus dem Anlagenbau und der Automobilbranche, sowie zwei Forschungsinstituten.

[ 2 ] Joppich, T.; Kilian, S.; Moll, P. & Schäfer, M. (2017), „Modular production plant for hybrid high performance components“. ICC - Lightweight Technologies Forum, Hrsg. Composites Germany - Carbon Composites e. V. , S. 0-0.
Abstract
A promising approach to reducing CO2 emissions and increasing energy and resource efficiency is the production of material combinations of fiber-reinforced plastics (FRP) and metallic elements in intrinsic hybridization. The direct connection of the various materials in the primary or forming process is achieved. The production of hybrid components, which is suitable for large series production and at the same time requires a great deal of variation, presents a considerable challenge, as current systems are adapted to the specific requirements of each component. This leads to insufficient economic efficiency and prevents the production of competitive products. The MoPaHyb research project funded by the BMBF is therefore developing a modular approach to the configuration of production plants. The starting point for the configuration of a plant is a modular system developed at wbk for lightweight production plants. In this module, the submodule manufacturers provide all relevant information and interfaces to their modules. The system designer can then select the modules required for the production of any hybrid component in the modular system and design the process by linking them together. With the aid of the modular construction kit, the engineering time of a production plant can be significantly reduced. The core of the modular system is the basic module developed by Siemens, which controls the entire system. The configuration from the modular system can be imported directly into the basic module, which automatically generates the sequence control for the entire system. The communication between the base module and the individual modules of the system takes place via standardized interfaces, whereby the OPC Unified Architecture (OPC UA) is used as communication protocol, which guarantees the platform-independent plug&work-enabled communication of the system components. The process and quality data collected during production of the individual modules are recorded centrally in the basic module and can be stored for later evaluation. By using high temperature resistant labels, each manufactured component can be assigned its process parameters. The modular approach developed in the project offers the industry the advantage that a production plant for hybrid components can be assembled from standard machines. The modularity allows the system to be quickly adapted to the manufacture of other products by replacing individual modules. Since the modules rely on standardized interfaces and manufacturer-independent protocols, these are immediately recognized by the basic controller and are immediately ready for operation. This results in the ability to produce different components without having to completely rebuild the production plant. The economical production of even small batch sizes is thus made possible, which greatly expands the application field of hybrid components. The MoPaHyb project consortium consists of 11 industrial partners from plant engineering and the automotive industry as well as two research institutes.

[ 3 ] Schäfer, M.; Moll, P. & Fleischer, J. (2018), „Modular production plants for hybrid lightweight components“. 22nd Dresden International Lightweight Engineering Symposium, Hrsg. Institut für Leichtbau und Kunststofftechnik, T. U. D., S. 141-145.
Abstract
In recent years there has been an increasing trend towards shorter product life cycles and an increasing number of variants due to individual customer requirements, which has led to smaller batches in production. In order to meet these market requirements, production plants must be adaptable to changing demands by fast reconfiguration. In the presented approach, a service-oriented-architecture for a modular production plant with methods of web-based configuration of the line control system was investigated.

[ 4 ] Moll, P.; Jacob, A.; Schäfer, M.; Coutandin, S.; Fleischer, J. & Lanza, G. (2018), „Plattformbasiertes Geschäftsmodell für rekonfigurierbare Produktionsanlagen im Leichtbau“, zwf - Zeitschrift für wirtschaftlichen Fabrikbetrieb, S. 580-583. 10.3139/104.111961
Abstract
Die Fertigung von Leichtbauprodukten in kleinen Stückzahlen stellt Anlagenbetreiber vor Herausforderungen. Um diesen zu begegnen, wird eine modular rekonfigurierbare Produktionsanlage vorgestellt. Ein durchgehender Engineering-Ansatz mit einheitlichen Modulbeschreibungen, einem nutzerfreundlichen Konfigurationstool und automatisierter Generierung des Steuerungscodes erlaubt eine Senkung des Inbetriebnahme- und Rekonfigurationsaufwands. Ein darauf fokussiertes plattformbasiertes Geschäftsmodell für Anlagenhersteller wird in diesem Beitrag vorgestellt.

[ 5 ] Moll, P.; Schäfer, M.; Coutandin, S. & Fleischer, J. (2018), „Aufbau einer modularen Produktionsanlage für hybride Faserverbundbauteile“, VDI-Z Integrierte Produktion, Nr. 11, S. 55-58.
Abstract
Der Markt fordert von Herstellern zunehmend individualisierte Produkte, was zu einer größeren Variantenvielfalt und abnehmender Stückzahl führt. Um unter diesen Rahmenbedingungen weiterhin wirtschaftlich produzieren zu können, sind wandlungsfähige Produktionsanlagen notwendig, die eine Fertigung verschiedener Bauteile und Bauteilvarianten ermöglichen. Eine aus einzelnen Modulen bestehende Anlage bietet die hierfür notwendige Wandlungsfähigkeit.

[ 6 ] Moll, P.; Schäfer, M.; Coutandin, S. & Fleischer, J. (2019), „Reconfigurable modular production plant for thermoplastic hybrid composites“, Production Engineering, Nr. 3, S. 469-477. 10.1007/s11740-019-00898-z
Abstract
Thermoplastic hybrid composites ofer a huge potential for lightweight design but due to the complex process chain for their manufacturing, the needed production plants often are quite expensive resulting in a proftability only for large lot sizes. A modular plant architecture allows a more fexible production of diferent parts thanks to reconfgurability. This results in cost savings which enable economical manufacturing of smaller lot sizes. In the following paper an approach for a modular production plant for thermoplastic hybrid composites and its architecture is presented. The modules of the plant are standard machines with a uniform interface linked by OPC UA. The core is a line control module controlling the sequence of production steps, plant safety and visualization. The independent control system of the production modules is based on a service-oriented architecture and state-based control. For the engineering of the plant, an approach for fast confguration and reconfguration is presented. Using a self-developed web application the plant can be easily confgured resulting in a so called production recipe containing all the relevant information about the plant. The production recipe is imported by a code generator, which automatically converts the information in a PLC code for operation of the line control. The described approach is validated by building and commissioning two diferent confgurations of the production plant showing the feasibility of the concept and signifcant gains in commissioning time.

[ 7 ] Schäfer, M.; Moll, P.; Brocke, L. & Fleischer, J. (2019), „Model for Web-Application based Configuration of Modular Production Plants with automated PLC Line Control Code Generation“. Procedia CIRP, Volume 83, Hrsg. Procedia CIRP, S. 292-297.
Abstract
The international competition leads manufacturers in high-wage countries to focus more on high-value products, which often come at the disadvantage of small batch sizes. To remain competitive, the plant engineering for should be time and cost effective. One approach to achieve this are modular production lines. In the presented contribution, a product orientated web- service for the configuration of a modular production plant investigated. The resulting model then is interpreted by a code generator to generate a PLC line control. The approach is validated with a plant of metal hybrid carbon fiber seat rests.

[ 8 ] Moll, P.; Ohlberg, L.; Salzer, S.; Coutandin, S. & Fleischer, J. (2019), „Integrated Gripping-system for Heating and Preforming of Thermoplastic Unidirectional Tape Laminates“. Procedia CIRP, Hrsg. CIRP, S. 263-268.
Abstract
Forming and overmolding of thermoplastic multi-layer UD-tape laminates has become increasingly important due to its potential for large-scale production. In the process the tape laminates have to be heated above melting temperature of the polymer in an infrared heater and then transported into the mold. To guarantee the formability of the laminate the temperature has to be maintained above the melting temperature during handling. To improve part quality a preforming of the tape laminate prior to overmolding is preferable. Integration of the preforming step in the handling process allows the shortening of the process route. In this work a gripping-system which allows further heating and preforming of the laminate during the handling process is presented. The temperature losses during transport have been modelled using the Stefan-Boltzmann law. By means of temperature measurements it is shown, that the integrated infrared-heaters allow a compensation of the cooling during handling, resulting in lower maximum heating temperature in the upstream infrared heating field and therefore a reduction of heating time and degradation of the polymer. The repeatability of the handling-integrated preforming has been evaluated using three-dimensional overlays of the resulting 3D-shaped laminates acquired by a laser scanning arm.

[ 9 ] Moll, P.; Schäfer, A.; Coutandin, S. & Fleischer, J. (2019), „Method for the Investigation of Mold Filling in the Fiber Injection Molding Process Based on Image Processing“. Procedia CIRP, Hrsg. CIRP, S. 156-161.
Abstract
Fiber Injection Molding is an innovative process for manufacturing 3D fiber formed parts. Within the process fibers are injected in a special mold through a movable nozzle by an air stream. This process allows a resource efficient production of near net-shape long fiber-preforms without cutting excess. For the properties of the preforms the mold filling is decisive, but current state of the art lacks methods to monitor mold filling online. In this paper a system for monitoring the mold filling based on image processing methods is presented. Therefor a camera and backlighting has been integrated into a fiber injection mold. The detected filling level and fiber distribution is passed to the PLC of the fiber injection molding machine, which allows the operator to monitor the current mold filling state by means of a visual display. The image processing approach consists of preprocessing, binarization and segmentation. For the preprocessing and binarization several methods including a k-means algorithm, the Otsu thresholding method and a convolutional artificial neural network have been implemented and evaluated. Additionally the illumination of the mold has been investigated and found to have a very large influence on the quality of the results of all investigated methods. The results of the binarization are evaluated on the basis of ground truth images, where an absolute difference between labeled and binarized images is formed and the number of misinterpreted pixels is counted. Among the investigated methods, the method based on the Otsu threshold has been found to be the most efficient with regard to the achievable performance as well as to the correct detection of the current filling. The investigated approach allows the acquisition of more data about the mold filling process to improve models.

[ 10 ] Moll, P.; Pirrung, F.; Baranowski, M.; Coutandin, S. & Fleischer, J. (2020), „Evaluation of Fiber Placement Strategies for the Implementation of Continuous“. SAMPE 2020 Virtual Series |??Additive Manufacturing.
Abstract
Among engineering materials today continuous fiber reinforced polymers (FRP) show some of the highest stiffness and strength to weight ratios. To rival the traditional manufacturing methods of continuous FRP many investigations have sought to combine the outstanding mechanical performances of these materials with the freedom in design and the economic benefits of additive manufacturing (AM). This paper focuses on the fiber placement strategies and their interaction with Selective Laser Sintering (SLS) specific machine features. The goal is to develop and conduct test series to gain a deeper understanding of how the process, the polymer, and the reinforcement fibers interact. For this investigation different patterns of glass fiber rovings are embedded into specimens made from PA 12 on a Sintratec Kit printer. The rovings are put up onto a frame in varying patterns to be able to relate fiber tension and curvature as well as the stack height of intersecting rovings to the quality of embedding. Additionally the time of placement, the clamping and the interaction of the fibers with the recoater have been investigated. Based on these results an SLS printer with automated continuous fiber implementation will be developed in the future.

[ 11 ] Moll, P.; Wang, S.; Coutandin, S. & Fleischer, J. (2020), „Fiber orientation measurement of fiber injection molded nonwovens by image analysis“, Textile Research Journal, 10.1177/0040517520948903 [30.11.-1].
Abstract
The fiber injection molding process is an innovative approach for the manufacturing of long fiber nonwoven preforms with little to no waste. An important property for the mechanical characteristics of the composite parts is the fiber orientation of the fiber injection molded nonwovens. In this paper a newly developed assemble method based on Fast Fourier Transform and improved Structure Tensor methods for the computation of the fiber orientation distribution in the local orientation by image analysis of transmitted light images is presented. For the computation of the fiber orientation, the Fast Fourier Transform and Structure Tensor methods are used. The new method is evaluated using simulated images and transmitted light images of real nonwovens to evaluate their accuracy. The computed fiber orientation distributions are compared to reference distributions by means of the Kullback?Leibler divergence. It is shown that the assemble method can perform accurate and reliable measurement of fiber orientation measurement and the modified tructure Tensor method improves results significantly compared to the current state of the art.

[ 12 ] Moll, P.; Wang, S.; Coutandin, S. & Fleischer, J. (2020), „Analysis of Basis Weight Uniformity Indexes for the Evaluation of Fiber Injection Molded Nonwoven Preforms“, Autex Research Journal, 10.2478/aut-2020-0039 [30.11.-1].
Abstract
Fiber injection molding is an innovative approach for the manufacturing of nonwoven preforms but products currently lack a homogeneous fiber distribution. Based on a mold-integrated monitoring system, the uniformity of the manufactured preforms will be investigated. As no universally accepted definition or method for measuring uniformity is accepted yet, this article aims to find a suitable uniformity index for evaluating fiber injection molded nonwovens. Based on a literature review, different methods are implemented and used to analyze simulated images with given distribution properties, as well as images of real nonwovens. This study showed that quadrant-based methods are suitable for evaluating the basis weight uniformity. It has been found that the indexes are influenced by the number of quadrants. Changes in sample size do not affect the indexes when keeping the quadrant number constant. The quadrants-based calculation of the coefficient of variation showed the best suitability as it shows good robustness and steady index for varying degrees of fiber distribution.