Home | english  | Impressum | Datenschutz | Sitemap | KIT
Patrick Bollig

M.Sc. Jan Klose

Teamleiter Verzahntechnik
Bereich: Fertigungs- und Werkstofftechnik
Sprechstunden: Nach Vereinbarung
Raum: 104, Geb. 10.92
Tel.: +49 721 608-42448
Fax: +49 721 608-45004
Jan KloseRhc2∂kit edu

76131 Karlsruhe
Kaiserstraße 12


M.Sc. Jan Klose

Forschungs- und Arbeitsgebiete:

  • Analyse und Entwicklung von Hochleistungsfertigungsverfahren

 

Projekte:

 

Allgemeine Aufgaben:

Veröffentlichungen

[ 1 ] Klotz, S.; Klose, J.; Sellmeier, V. & Schulze, V. (2017), „Variantenanalyse zur Effizienzsteigerung beim Wirbeln mit synchronem Drehen“. PIA - Prozessketten im Automobilbau, Hrsg. Denkena, B., S. 121-129.
Abstract:
PIA - Prozesskette im Automobilbau, Tagung bei DMG Mori in Bielefeld vom 03. – 04.07.2017, Vorstellung des Themas "Variantenanalyse zur Effizienzsteigerung beim Wirbeln mit synchronem Drehen".

[ 2 ] Zanger, F.; Sellmeier, V.; Klose, J.; Bartkowiak, M. & Schulze, V. (2017), „Comparison of Modeling Methods to Determine Cutting Tool Profile for Conventional and Synchronized Whirling“. Procedia Cirp, Hrsg. Elsevier, S. 222-227.
Abstract:
The determination of cutting tool profiles for machining operations with coupled rotational kinematics like gear and screw generation can be a complex task which is executed by either numerical or analytical methods. The cutting tool profile for whirling is derived from process parameters and desired workpiece geometry by both a numerical dexel-based model and an analytical model based on the condition of tangential motion. The models are adapted to a process variant of whirling with synchronized rotation of tool and workpiece and compared regarding accuracy, computation time and geometrical flexibility.

[ 3 ] Segebade, E.; Klose, J.; Gerstenmeyer, M.; Zanger, F. & Schulze, V. (2017), „Mechanical surface modification using cutting inserts“. Proceedings of the 13th ICSP, Hrsg. International Scientific Committee for Shot Peening, S. 219-224.
Abstract:
The objective of this work is presenting the foundation of a true integration of mechanical surface modification and machining. This “fusion” entails mechanical surface modification parallel to the cutting process using the cutting insert as tool. While it may seem, that something similar can be achieved through classical vibration assisted machining (VAM), this is definitely not the case. The resulting relative velocity between cutting insert and workpiece will ensure the process to be firmly rooted in cutting rather than hammering of the workpiece. Since creating a setup suitable to address this issue is a big challenge in itself, it is prudent begin by establishing the general feasibility of the process. The first priority is therefore proving that cutting inserts can be used to induce surface layer states similar to those achieved by MHP-processes. The presented work addresses this validation of mechanical surface treatment using cutting inserts regarding topography, residual stresses and work hardening by model experiment.