Home | english  | Impressum | Sitemap | KIT

M.Sc. Paul Ruhland

Akad. Mitarbeiter
Bereich: Maschinen, Anlagen und Prozessautomatisierung
Sprechstunden: Nach Vereinbarung
Raum: 012, Geb. 50.36
Tel.: +49 721 608-47357
Fax: +49 721 608-45005
Paul RuhlandHcb1∂kit edu

Campus Süd

M.Sc. Paul Ruhland

Forschungs- und Arbeitsgebiete:
  • Leichtbaufertigung im Bereich der Faserverbundkunststoffe


[ 1 ] Fleischer, J.; Koch, S. & Ruhland, P. (2016), „Rotational Molding of Fiber Reinforced Plastics with Elastic Composite Core“. CIRP COMA 2016 "International Conference on Competitive Manufacturing", 27.1.2016-29.1.2016, Stellenbosch, Südafrika, Resource Efficiency for Global Competitiveness, Hrsg. Dimitrov, D. & Oosthuizen, T., S. 181-186.
The rotational molding with an elastic composite core is an interesting process for the manufacturing of fiber reinforced plastics (FRP) with polygon cross-section. The polygon shape can be used for an in-mould-assembly of FRP and metal structures. On this way a load transmission with combined form-fit and adhesive bonding can be realized. Those hybrid parts are a suitable lightweight solution for shafts, pipes and profiles. The processing via rotational molding with composite core can be carried out as follows: First dry continuous fiber structures and the elastic composite core are assembled and then laid in a closed mold. Subsequently, liquid thermosetting resin is cast and the mold is rotated at high speed. During rotation the composite cores expands and pushes the matrix into the areas that normally, without the composite core, would not be impregnated. The rotation is continued until the fiber structure is fully impregnated and the polymer is cured. Within this paper, the manufacturing of polygon profiles with an elastic composite core is described. An analytic approach is introduced, which enables an ideal design and material choice of the elastic composite core and the achievement of high fiber volume fractions for fiber reinforced plastic hollow structures. Furthermore the manufacturing of elastic cores are depicted.