Home | english  | Impressum | Datenschutz | Sitemap | KIT
Jacques Burtscher

Dipl.-Ing. Jacques Burtscher

Akad. Mitarbeiter
Bereich: Maschinen, Anlagen und Prozessautomatisierung
Sprechstunden: nach Vereinbarung
Raum: 007, Geb. 50.36
Tel.: +49 721 608-44014
Fax: +49 721 608-45005
Jacques BurtscherWgk3∂kit edu

Campus Süd



Dipl.-Ing. Jacques Burtscher

Forschungs- und Arbeitsgebiete:

  • Berechnung und Optimierung des dynamischen Verhaltens von Werkzeugmaschinen
  • Entwicklung mechatronischer Systeme
  • Analyse von Produktionsanlagen (Wertanalyse, Funktionsanalyse, Signalverarbeitung & Methoden des Machine Learnings)

 

Allgemeine Aufgaben:

 

Projekte:

 

Versuchsstände:

 

Dissertationsthema: Erhöhung der Bearbeitungsstabilität von Werkzeugmaschinen durch semi-passive masseneinstellbare Dämpfungssysteme

Veröffentlichungen

[ 1 ] Fleischer, J.; Schulze, V.; Burtscher, J. & Dosch, S. (2014), „Robot-based guiding of extrusion profiles - Increase of guiding accuracy by considering the temperature-dependent effects“. Procedia CIRP, Proceedings of the International Conference on Manufacturing of Lightweight Components - ManuLight 2014, Hrsg. Elsevier, Elsevier, S. 21-26.
Abstract:
Three-dimensionally curved extrusion profiles are used to manufacture lightweight frame structures. These profiles have to be flexibly manufactured, especially for a small batch production. For this reason, a flexible process chain with an automated Extrusion process was build up. In this paper an approach for offline calculation of path data for the guiding of unsteady extrusion profiles with industrial robots is presented. This approach includes a consideration of the profile deformation caused by cooling during production. The required correction values are determined by using a coupled kinematic and thermal FEM simulation.

[ 2 ] Burtscher, J.; Fleischer, J. & Schulze, V. (2014), „Robot-based Guiding of Extrusion Profiles - Reduction of the Material Waste in the Manufacturing Process“. International Conference on Sustainable Manufacturing (ICSM) , Hrsg. Beijing Jigong Vogel Media Advertising, S. 165-169.
Abstract:
The small batch production of space-frame-structures is realized with an innovative manufacturing process chain. This process chain allows the production of three-dimensionally curved extrusion profiles. Profiles are shaped directly after leaving the extrusion press and guided through the room by industrial robots. Currently profiles are extruded one at a time. The deficit of the actual manufacturing installation is the material waste at the beginning and at the end of the extrusion of one profile. To increase the sustainability, a new approach is to reduce this material waste through continuous manufacturing. An optimization algorithm for an automatic determination of the manufacturing sequence of diverse profiles was developed. In this way multiple profiles are produced in only one extrusion batch and the material waste is drastically reduced.

[ 3 ] Fleischer, J.; Schulze, V.; Burtscher, J. & Dosch, S. (2015), „Geschwindigkeitsmessung bei gerundeten Strangpressprofilen“, VDI-Z Integrierte Produktion, Nr. 1, S. 60-62.
Abstract:
Zur Herstellung gekrümmter Profile kommt in einem neuartigen Prozess eine modifizierte Strangpresse zum Einsatz. Die Handhabung der gekrümmten Profile wird mittels zwei auf Industrierobotern fixierten Werkzeugen realisiert. Zur Synchronisation der Handhabungswerkzeuge relativ zum austretenden Strang muss die Geschwindigkeit des Strangs exakt bekannt sein. Vorgestellt wird eine innovative Einrichtung zur Messung der Geschwindigkeit eines bewegten Strangs mithilfe eines „Laser Surface Velocimeters“. Der Laserstrahl wird aufgrund des begrenzten Raums am Pressenaustritt über ein System aus zwei Spiegeln zum Messpunkt umgelenkt. Die Einflüsse der Umlenkung und das Ermitteln der absoluten Messgenauigkeit des Systems werden an einem Versuchsstand untersucht.

[ 4 ] Burtscher, J.; Koch, S.; Bauer, J.; Wagner, H. & Fleischer, J. (2015), „High Performance Machining Enabled by Adaptive Machine Components“. Procedia CIRP, Hrsg. Elsevier, Elsevier, S. 70-75.
Abstract:
A current drawback in high performance machining is the dynamic behavior of the machine tool. The dedicated Eigenfrequencies of the machine tool structure lead to not optimal cutting parameters due to the danger of chatter. Possibilities to overcome this drawback are on one hand the unwanted variation of the cutting parameters and on the other hand the variation of the dynamic properties of the machine tool components. The variation of the dynamic properties of these components requires high efforts and expenses. An approach to easily vary the dynamic characteristic of the machine tool is a carriage made out of Carbon Fibre Reinforced Plastic (CFRP) with adequate mass shifting by filling the built in chambers with a fluid. This leads to shifted Eigenfrequencies and therefore to optimal cutting parameters without chatter. The mass ratio between the empty lightweight machine tool carriage made out of CFRP and the one filled enables a significant frequency shift. Within this paper three issues will be addressed: first the frequency shift depending on the carriage's position will be examined, the frequency shift according to the filling strategy will be shown and finally the amplitude reduction related to the external excitation will be presented.

[ 5 ] Burtscher, J. & Fleischer, J. (2017), „Adaptive tuned mass damper with variable mass for chatter avoidance“. CIRP Annals 2017 Manufacturing Technology, Hrsg. Elsevier, S. 397-400.
Abstract:
If the machine tool damping is not sufficient to reduce the vibration induced by machining, chatter can occur. This paper presents an innovative adaptive tuned mass damper (ATMD) with variable mass. The variation of the mass of the ATMD allows the adaption of its eigenfrequency to the dominant one of the machine tool, which is dependent on the axis position of the machine. The design of the ATMD and consequently its working range was optimized with a genetic algorithm. The functionality and performance of the ATMD were then validated under real cutting conditions on a machining centre.

[ 6 ] Burtscher, J.; Spohrer, A.; Barton, D. & Fleischer, J. (2018), „Intelligente Vorschubachsen mit Industrie 4.0-Funktionalität“, VDI-Z Integrierte Produktion, Nr. 4, S. 42-44.
Abstract:
Dynamische Vorschubachsen tragen maßgeblich zur Produktivität von Werkzeugmaschinen bei. Ihre Inbetriebnahme ist allerdings mit hohen personellen Aufwänden verbunden. Unerwünschte Bearbeitungsschwingungen, sowie ungeplante Ausfälle führen zudem zu signifikanten Produktivitätsverlusten im industriellen Einsatz. Am wbk Institut für Produktionstechnik werden daher Industrie 4.0-Lösungen entwickelt, die durch intelligente Funktionalitäten in der Vorschubachse einen Mehrwert bei Inbetriebnahme, Betrieb und Wartung von Werkzeugmaschinen versprechen.