Home | english  | Impressum | Datenschutz | Sitemap | KIT


Hier finden Sie alle Pressemitteilungen aus dem Jahr 2013. weiterlesen...

Neueste Publikationen

[ 1 ] Kupzik, D.; Coutandin, S. & Fleischer, J. (2018), „Flexibles vorrichtungsfreies Fügen“, VDI-Z, Band 160, S. 21-24.
Die steigende Variantenvielfalt im Automobilbau durch neue Modelle und elektrische Derivate motiviert ein Umdenken im Karosserierohbau. In SmartBodySynergy wird ein flexibler Karosserierohbau in Werkstattfertigung entwickelt. Für dessen Umsetzung sind flexible Fügezellen notwendig. In diesem Artikel wird der Einsatz einer vorrichtungsfreien, kamerageregelten Bauteilpositionierung für den Einsatz in varianten- und vorgangsflexiblen Fügezellen untersucht und eine Demonstratorzelle vorgestellt.

[ 2 ] Roth, S.; Coutandin, S. & Fleischer, J. (2018), „MATERIAL- & PROCESS CHARACTERIZATION OF FIBRE-METAL-ELASTOMER LAMINATE COMPONENTS WITH HIGH FORMING DEGREES“. Faszination Hybrider Leichtbau 2018: Beiträge zur gleichnamigen Tagung, Hrsg. ITS automotive nord e.V., S. 1-9.
Hybrid material concepts provide a high variability in the resulting part properties, and thus are often applied to satisfy multiple component demands. Fibre-metal laminates (FML) are widely spread in aerospace applications and are being used for decades as they show a high lightweight potential and a good fatigue behaviour. However, a broad conventional use of hybrid laminates in the automotive sector is not existing until today. The high manufacturing costs, caused by the surface pre-treatment of the metal layer, as well as long process cycles and a limited formability of current laminates are not suitable for automotive applications. This paper presents an approach, which allows the processing of hybrid laminates for high-volume applications and enables high forming degrees of the manufactured parts. As an additional elastomer layer is used to separate the metal from the fibre reinforced layer, carbon fibre reinforced polymers (CFRP) can be used instead of conventional glass fibres, preventing a galvanic corrosion between carbon and the metal. In addition to the manufacturing process itself, the influence of the formability will be discussed with regards to the distribution of the laminate layers, determining achievable forming degrees of the manufactured fibre-metal-elastomer laminate (FMEL) specimen. The laminate behaviour during the forming of the uncured laminate will be described by analysing micro sections. Furthermore, the results of an experimental modal analysis will be presented in order to determine the damping properties of the investigated hybrid laminates.

[ 3 ] Hillenbrand, J.; Spohrer, A. & Fleischer, J. (2018), „Zustandsüberwachung bei Kugelgewindetrieben“, wt Werkstatttechnik online, Nr. 8, S. 493-498. [31.08.18].
Industrielle Antriebe, darunter lineare Vorschubachsen wie der Kugelgewindetrieb, unterliegen einem natürlichen Verschleißverhalten. Diesen Verschleißzustand zu diagnostizieren und die verbleibende Betriebsdauer der Komponente abzuschätzen, ist das Ziel von Condition-Monitoring-Systemen. Der Artikel präsentiert ein solches System, basierend auf einem in den Kugelgewindetrieb integrierten Sensor.

[ 4 ] Buergin, J.; Helming, S.; Blaettchen, P.; Schweizer, Y.; Bitte, F.; Haefner, B. & Lanza, G. (2018), „Local order scheduling for mixed-model assembly lines in the aircraft manufacturing industry“, Production Engineering Research and Development, S. 1-9.
Multi-variant products to be assembled on mixed-model assembly lines at locations within a production network need to be scheduled locally. Scheduling is a highly complex task especially if it simultaneously covers the assignment of orders, which are product variants to be assembled within a production period, to assembly lines as well as their sequencing on the lines. However, this is required if workers can flexibly fulfill tasks across stations of several lines and, thus, capacity of workers is shared among the lines. As this is the case for final assembly of the Airbus A320 Family, this paper introduces an optimization model for local order scheduling for mixed-model assembly lines covering both assignment to lines as well as sequencing. The model integrates the planning approaches mixed-model sequencing and level scheduling in order to minimize work overload in final assembly and to level material demand with regard to suppliers. The presented model is validated in the industrial application of the final assembly of the Airbus A320 Family. The results demonstrate significant improvement in terms of less work overload and a more even material demand compared to current planning.

[ 5 ] Lux, E.; Adam, M.; Dorner, V.; Helming, S.; Knierim, M. & Weinhardt, C. (2018), „Live Biofeedback as a User Interface Design Element: A Review of the Literature“, Communications of the Association for Information Systems, S. 257-296. 10.17705/1CAIS.04318
With the advances in sensor technology and real-time processing of neurophysiological data, a growing body of academic literature has begun to explore how live biofeedback can be integrated into information systems for everyday use. While researchers have traditionally studied live biofeedback in the clinical domain, the proliferation of affordable mobile sensor technology enables researchers and practitioners to consider live biofeedback as a user interface element in contexts such as decision support, education, and gaming. In order to establish the current state of research on live biofeedback, we conducted a literature review on studies that examine self and foreign live biofeedback based on neurophysiological data for healthy subjects in an information systems context. By integrating a body of highly fragmented work from computer science, engineering and technology, information systems, medical science, and psychology, this paper synthesizes results from existing research, identifies knowledge gaps, and suggests directions for future research. In this vein, this review can serve as a reference guide for researchers and practitioners on how to integrate self and foreign live biofeedback into information systems for everyday use.