Home | english  | Impressum | Datenschutz | Sitemap | KIT

Ludwig Hausmann, M.Sc.

Akad. Mitarbeiter
Bereich: Maschinen, Anlagen und Prozessautomatisierung
Sprechstunden: nach Vereinbarung
Raum: 012, Geb. 50.36
Tel.: +49 1523 9502580
Ludwig HausmannIwz6∂kit edu

76131 Karlsruhe
Kaiserstraße 12


Ludwig Hausmann, M.Sc.

Forschungs- und Arbeitsgebiete:

  • Elektromaschinenbau

 

Projekte:

 

Lebenslauf:

seit 10/2018 Wissenschaftlicher Mitarbeiter am Institut für Produktionstechnik (wbk) des Karlsruher Instituts für Technologie (KIT)
03 - 07/2017 Auslandsaufenthalt am amtc der Tongji Universität, Shanghai
10/2011 - 05/2018 Studium des Maschinenbaus am Karlsruher Institut für Technologie (KIT)
   

 

Veröffentlichungen

[ 1 ] Wirth, F.; Hausmann, L.; Halwas, M.; Hofmann, J.; Mayer, D.; Wößner, W. & Fleischer, J. (2019), „Optimierte Fertigung elektrischer Traktionsmotoren durch Technologien der Industrie 4.0“. Future Mobility: automatisiert - vernetzt - elektrisch, Hrsg. Technische Akademie Esslingen e.V., S. 1-14.
Abstract:
Striktere Emissionsvorgaben der Europäischen Union sowie die Endlichkeit fossiler Energieträger werden in der kommenden Dekade zu einem steigenden Absatz elektrifizierter Antriebsstränge führen. Damit die wachsende Nachfrage nach leistungsfähigen Traktionsmotoren sowie die hohen Anforderungen bezüglich Stückzahl und Qualität erfüllt werden können, müssen die innovativen aber vielmals noch unreifen Fertigungsprozesse für den industriellen Einsatz befähigt werden. Die Integration neuartiger Technologien der Industrie 4.0 in die Produktionskette stellt einen vielversprechenden Ansatz zur Lösung dieser Probleme dar. Durch eine digitale Prozessabsicherung können Wickelverfahren vor deren hardwareseitiger Erprobung bewertet und optimiert sowie Inbetriebnahmezeiten verkürzt werden. Zudem gestattet der digitale Zwilling sowohl eine prädiktive Prozesssteuerung als auch die isolierte Betrachtung von Einflussgrößen und darauf basierende Ableitung von Regelungsstrategien. Methoden des maschinellen Lernens und intelligente Algorithmen ermöglichen die Bewertung bislang unbekannter, produktseitiger Merkmale, wie den Lagenaufbau von Leitern in den Nuten von Blechpaketen, sowie die Einhaltung enger Qualitätsvorgaben durch angepasste Montagestrategien.

[ 2 ] Hausmann, L.; Wirth, F.; Franck, C.; Förderer, M.; Karrer, M.; Hofmann, J. & Fleischer, J. (2019), „Ausbildungsfabrik Statorfertigung“, ZWF Zeitschrift für wirtschaftlichen Fabrikbetrieb, Band 10, S. 621-626.
Abstract:
The transformation process towards electric mobility results in new requirements for product development and production technology, which require the appropriate qualification of employees. In order to enable holistic further training, the wbk Institute for Production Engineering at KIT develops high-quality training concepts for the production of stators of electric traction drives by hairpin technology based on vocational pedagogical methods and integrates them into the overall concept of the training factory stator production.

[ 3 ] Hofmann, J.; Halwas, M.; Weinmann, H.; Wößner, W.; Schäfer, J.; Hausmann, L.; Wirth, F.; Storz, T. & Schild, L. (2019), „Transformationshub Elektromobilität in Baden-Württemberg“ in Auf dem Weg zur Elektromobilität – Wettbewerbsfaktor Produktionstechnik , Hrsg. Fleischer, J.; Lanza, G.; Schulze, V. & , ., Shaker, Berlin, S. 1-29. ISBN/ISSN: 978-3-8440-6953-2
Abstract:
Die Automobilindustrie steckt in einem Transformationsprozess un-geahnten Ausmaßes und Ausgangs. Ob durch striktere europäische Abgasgrenzwerte, den Zwang lokaler Emissionsfreiheit oder den Druck des chinesischen Marktes beim Kampf um eine neue Vorherrschaftsrolle - die Gründe deutscher Automobilisten zur Elektrifizierung sind vielschichtig und die Folgen kaum abschätzbar. Die Frage, ob neue Antriebstechnologien in den Markt eingeführt wer-den, stellt sich mittlerweile kein Automobilhersteller mehr, stattdessen verbleibt die Frage nach dem „wie“. Mit der diesjährigen wbk Herbsttagung „Auf dem Weg zur Elektromobilität – Wettbewerbsfaktor Produktionstechnik“ wollen wir die vorhandenen Chancen im Bereich der Produktionstechnik für die Elektromobilität aufzeigen und einen Beitrag dazu leisten, dass diese auch genutzt werden. Hochkarätige Impulsvorträge aus Industrie und Forschung schaffen die Diskussionsbasis für einen Informationsaustausch zur Elektromobilität. Die wbk-Herbsttagung bietet dabei eine Plattform für den Dialog zwischen Politik, Anwendern, Produzenten, Anlagenbauern sowie dem wbk als Forschungspartner vor Ort.

[ 4 ] Halwas, M.; Sell-Le Blanc, F.; Jux, B.; Doppelbauer, M.; Wirth, F.; Hausmann, L.; Hofmann, J. & Fleischer, J. (2019), „Coherences Between Production Technology and Performance of Electric Traction Drives“. 2019 9th International Electric Drives Production Conference (EDPC), Hrsg. IEEE, S. 1-9.
Abstract:
Coherences between production technology and performance of electric traction drives are published or based on experiential knowledge. The content of this paper shall represent an essential basis for intentions of improving future research and development purposes of production technologies for traction drives, but also of electric machine designs in general. The basic ambition of engineering a new manufacturing technology is to improve the performance of a product, taking several boundary conditions into account, like costs or cycle times. It has to be considered that the conflict area of production and performance are connected by physical characteristics, which are determined by the geometric and material compositions of the electric machine in this context. It is evident that the physical characteristics have a direct impact on the performance of electric machines. However, the production technology has a straight and unavoidable influence on the physical characteristic. An example for this is the slot fill factor, which is determined by the winding technology, but influences the performance of the machine significantly. First, known coherences between physical characteristics and performance of electric machines are considered. Therefore, an extensive summary of technical literature and publications at the current state of the art in science applications is used as a starting point. To give the best possible overview, a summary and visualization dependency matrix is created, in which the various elements of physical characteristic and the resulting performance of the electric machine are compared against each other. Next, the main influences of the different manufacturing processes on the characteristics of electric machines are presented, especially focusing on the winding technology. These contents are also transferred into the dependency matrix.

[ 5 ] Mayer, D.; Hausmann, L.; Maul, N.; Reinschmidt, L.; Hofmann, J. & Fleischer, J. (2019), „Systematic investigation of the grooving process and its influence on slot insulation of stators with hairpin technology“. 9th International Electric Drives Production Conference (E|DPC) - Proceedings, Hrsg. IEEE, S. 161-167.
Abstract:
Due to the increasing electrification of the automotive drive train, production systems for electric motors grow in importance. In order to produce the required quantities at reasonable costs there is a particular need for developing new stator production plants. A trend towards using shaped coils in stators, so called hairpins, is emerging as this technology promises great automation potentials as well as high copper fill factors. Due to the axial insertion of the hairpins into the lamination stack the requirements for the slot liner shape change in contrast to the widely used winding technologies. Thus, new slot liner shapes, such as ‘B’-, ‘O’- or ‘S’-shapes, can be used. The shapes replace the previous ‘U’- shaped slot liner as well as the slot cover. In order to maintain a high fill factor, the shapes have to fit closely to the lamination stack. For this purpose, the insulation paper must be grooved and then folded into the desired shape. To map the new slot liner shapes, the grooving process and its influence on slot insulation must be understood in detail. In this paper the grooving process and its effect on breakdown voltage of the slot liner are examined. First, an overview about different insulation materials for slot liners is given. Second, a test rig setup to adjust different depths and widths of grooving is introduced. Additionally, a further test rig setup for conducting breakdown voltage tests on slot liners is presented. Based on these test rigs, experiments are carried out to determine how the grooving process parameters affect the breakdown voltage of the slot liners. As a result of the investigation a characterization of the grooving process regarding the breakdown voltage for the examined insulation paper is presented.