Home | english  | Impressum | Datenschutz | Sitemap | KIT

M.Sc. Daniel Kupzik

Akad. Mitarbeiter
Bereich: Maschinen, Anlagen und Prozessautomatisierung
Sprechstunden: nach Vereinbarung
Raum: 007, Geb. 50.36
Tel.: +49 721 608-42456
Fax: +49 721 608-45005
Daniel KupzikEwt3∂kit edu

76131 Karlsruhe
Kaiserstraße 12


M.Sc. Daniel Kupzik

Forschungs- und Arbeitsgebiete:

  • Leichtbaufertigung
  • Robotik
  • Handhabungstechnik
  • Thermoplast

 

Allgemeine Aufgaben:

  • Betreuung der Vorlesung „Automatisierte Produktionsanlagen“

 

Projekte:

  • SmartBodySynergy zur Flexibilisierung der Fügezellen im Karosserierohbau
  • Graduiertenkolleg IRTG 2078 zur integrierten Verarbeitung von Lang- und Endlosfasermateialien

 

Versuchsstände: Roboterzelle für das vorrichtungsfreie Fügen

 

Lebenslauf:

seit 01/2017

Wissenschaftlicher Mitarbeiter in der Gruppe Maschinen, Anlagen und Prozessautomatisierung am Institut für Produktionstechnik (wbk) des Karlsruher Instituts für Technologie (KIT)

10/2011 - 12/2016 Studium des Maschinenbaus am KIT

 

 

Veröffentlichungen

[ 1 ] Schwennen, J.; Kupzik, D. & Fleischer, J. (2017), „Development of a calculation model for Ioad introduction elements integrated during frp sandwich structure manufacturing“. SAMPE Seattle 2017 : conference: May 22-25, 2017, exhibition: May 23-24, 2017, Washington State Convention Center, Seattle, Washington, Hrsg. Blohkowiak, K., S. 969-983.
Abstract:
Due to their high lightweight potential, FRP sandwich structures with foam cores are becoming increasingly important in the automotive industry. In order to accommodate local forces, load introduction elements are required. This work is part of a project in which the geometry is optimized for maximum load capacity, while taking into consideration the cost and the process restrictions. This paper deals with the creation of a suitable FEM model for investigating the effects of geometrical changes of the load introduction element on the load capacity. For this purpose, parameters of the foam and the insert material are determined experimentally. Subsequently, simulation examples are constructed using different solution methods, then compared and evaluated for applicability for an automatic optimization process. The result of the work shows that particularly three-dimensional models, which are explicitly solved, can deliver good results. The simulation results correspond very well to the experimentally determined tensile test curves.

[ 2 ] Kupzik, D. (2017), „Vorrichtungsfreies Fügen in smarten Rohbauzellen“, handling 6/2017, S. 36-37.
Abstract:
Zur Senkung der Anlaufkosten von Fahrzeugderivaten mit niedriger Stückzahl wird im Karosserierohbau in Werkstattfertigung das vorrichtungsfreie Fügen in den geometriebildenden Zellen eingeführt.

[ 3 ] Schwennen, J.; Kalbhenn, L.; Klipfel, J.; Pfeifle, J.; Kupzik, D. & Fleischer, J. (2017), „Evolutionary Optimization of the Failure Behavior of Load Introduction Elements Integrated During FRP Sandwich Structure Manufacturing“. Procedia CIRP, Hrsg. Roberto Teti, D. M. D., S. 410-415.
Abstract:
Due to their high lightweight potential, fiber-reinforced-plastics (FRP) sandwich structures with foam cores are becoming increasingly important in the automotive industry. To accommodate local forces, load introduction elements called inserts are required. A new type of insert is integrated into the sandwich panel during manufacturing. To accelerate the design and development process of these inserts, an optimization framework is developed based on the Abaqus CAE package and the Python programming language. An automated parametric nonlinear finite-element method (FEM) model is used to evaluate the performance of insert geometries. This model is integrated into an optimization routine based on a genetic algorithm. The population-based approach is very scalable through parallelization and shows accurate results within reasonable processing times.

[ 4 ] Kupzik, D.; Haas, S.; Stemler, D.; Pfeifle, J. & Fleischer, J. (2018), „Development of a manufacturing cell for fixtureless joining in car body assembly“. Tagungsband des 3. Kongresses Montage Handhabung Industrieroboter, Hrsg. Schüppstuhl, J. ., S. 22-30.
Abstract:
The integration of electric drivetrain components into the chassis of automobiles dramatically increases the variety of car body designs and calls for changes to the production processes. One approach is to replace the typical assembly line manufacturing process with a workshop production system, as has already happened in machining, where transfer lines have been replaced by flexible manufacturing systems. One requirement for this shift is the development of a flexible joining cell which can perform different stages of joining operations on different variations of a vehicle. One step in the development of such a cell is the replacement of mechanical positioning elements, used to define the parts’ relative positions before joining. In this work, the positioning of the components is done using a camera-based measuring system and a control loop to reorient the robots holding the parts. This paper describes how the system is developed and implemented in a demonstration cell.