Home | english  | Impressum | Datenschutz | Sitemap | KIT

Bruno Vargas, M.Sc.

Akad. Mitarbeiter
Bereich: Fertigungs- und Werkstofftechnik
Sprechstunden: Nach Vereinbarung
Raum: Geb.10.92, 102
Tel.: +49 1523 9502625
Bruno VargasKyv2∂kit edu

76131 Karlsruhe
Kaiserstraße 12

Bruno Vargas, M.Sc.

Forschungs- und Arbeitsgebiete:

  • Verzahntechnik
  • Wälzschälen
  • Kinematische Simulation von Verzahnverfahren


Allgemeine Aufgaben:



  • FVA „Wälzschälen mit kleinen Achskreuzwinkeln“




Dissertation: Wälzschälen mitkleinen Achskreuzwinkeln



Seit 06/2016 Wissenschaftlicher Mitarbeiter am Institut für Produktionstechnik (wbk) des Karlsruher Instituts
für Technologie (KIT)
02/2014 - 02/2016 Master Maschinenbau, Bundesuniversität Minas Gerais (UFMG), Belo Horizonte (Brasilien)
Masterarbeit: „Numerische-Experimentelle Schwingungsanalyse von der Hauptspindel eines Bearbeitungszentrums“
07/2012 - 06/2015 Konstruktioningenieur, Kotchergenko Engenharia, Belo Horizonte (Brasilien)
09/2010 - 02/2011 Projektarbeit, Mapal Dr. Kress, Aalen, Thema: „Schneidkantenverrundung von CBN-Platten für die Hartbearbeitung und Gussschnitt“
03/2007 - 06/2012 Bachelor Maschinenbau, Bundesuniversität Minas Gerais (UFMG), Belo Horizonte (Brasilien)
Bachelorarbeit: „Geometrische Abweichungen beim Schaftfräsen vom Werkzeugstahl DIN 1.2379“
14/08/1987 Geboren in Belo Horizonte (Brasilien)



[ 1 ] Vargas, B.; Klose, J.; Zanger, F. & Schulze, V. (2019), „Simulative and Experimental Investigation of Gear Skiving with Reduced Axis Crossing Angles “. GETPRO, Hrsg. Forschungsvereinigung Antriebstechnik e.V. (FVA), S. 235-244.
Gear skiving has been increasingly used in the production of internal gears and shows high potential to manufacture external gears with adjacent shoulders. In order to avoid tool – workpiece collision, it is possible to minimize the length of tool overrun by reducing the axis crossing angle. However, the process kinematics changes with this reduction, representing a big challenge to the process design. In order to fulfill the lack of detailed knowledge and establish its industrial practice, simulative and experimental studies with axis crossing angles Σ between 5° and 15° were conducted. A three-dimensional kinematic simulation of gear skiving based on penetration calculation was carried out to demonstrate the influence of the process parameters on the local cutting conditions. The results show that the local rake angle reaches extremely negative values at the tooth tip of the cutting tool, which is usually characterized by the highest wear rates and therefore is critical for tool life. In order to relieve the local rake angles inherent to the unfavorable kinematics, both the tool geometry and the process can be optimized. Therefore, the simulations demonstrate how the constructional rake angle and the multiple infeed strategy can positively influence the local rake angle. In order to investigate how the local cutting conditions influence the cutting forces, wear behavior and tool life, tests with single-toothed tools were conducted for different axis crossing angles. The influence of the infeed strategy, tool rake angle and maximum uncut chip thickness on the local cutting conditions were investigated and different wear behaviors for axis crossing angles less than 10° were observed, suggesting a process limit regarding tool life. For smaller angles, the influence of the investigated parameters is very pronounced and the process design is limited to a narrow but still existing parameter window.

[ 2 ] Vargas, B.; Zapf, M.; Klose, J.; Zanger, F. & Schulze, V. (2019), „Numerical Modelling of Cutting Forces in Gear Skiving“. Procedia CIRP 82, Hrsg. Elsevier B.V., S. 455-460.
Gear skiving is a high-performance machining process for gear manufacturing. Due to its complex kinematics, the local cutting conditions vary during tool engagement. Particularly, the local rake angle can reach highly negative values, which have a significant effect on the cutting force. In this paper, the Kienzle force model with additional coefficients was implemented in a numerical model to calculate local cutting forces considering the influence of local rake angle. The experimental validation based on total cutting forces shows good results and indicates an increase of model accuracy for a wide parameter range by considering the rake angle Variation.