Home | english  | Impressum | Sitemap | KIT
Fabian Ballier

Dipl.-Ing. Fabian Ballier

Akad. Mitarbeiter
Bereich: Maschinen, Anlagen und Prozessautomatisierung
Sprechstunden: nach Vereinbarung
Raum: 013, Geb. 50.36
Tel.: +49 721 608-46019
Fax: +49 721 608-45005
Fabian BallierUxf2∂kit edu

Campus Süd



Dipl.-Ing. Fabian Ballier

Forschungs- und Aufgabengebiete:
  • Leichtbaufertigung
  • Maschinen- & Handhabungskonzept

 

Allgemeine Aufgaben:

 

Lebenslauf:

seit 03/2014 wissenschaftlicher Mitarbeiter in der Gruppe Maschinen, Anlagen und Prozessautomatisierung
am WBK Institut für Produktionstechnik des Karlsruher Instituts für Technologie (KIT)
10/2007 - 02/2014 Studium des Maschinenbaus mit Vertiefungsrichtung Mechatronik an der Universität Karlsruhe (TH)

 

 

 

Veröffentlichungen

[ 1 ] Ballier, F.; Schwennen, J.; Berkmann, J. & Fleischer, J. (2015), „The Hybrid RTM Process Chain: Automated Insertion of Load Introducing Elements during Subpreform Assembling“. Progress in Production Engineering , Hrsg. Jens P. Wulfsberg, B. R. A. T. M., S. 312-319.
Abstract:
Fiber reinforced plastics are increasingly employed in the automobile industry. The process chain of resin transfer molding offers one approach for realizing structural components made of fiber reinforced plastic in high quantities. In order to increase economic efficiency, automated solutions for the subpreform assembly are required. There is also the need for mechanically highly stressable and at the same time economical joining techniques for joining fiber reinforced plastics with metal. The following article shall provide an approach to meet both of these requirements.

[ 2 ] Fleischer, J.; Ballier, F. & Dietrich, M. (2016), „Joining Parameters and Handling System for Automated Subpreform Assembly “. Robotics and Automated Production Lines , Hrsg. Thorsten Schüppstuhl, J. F. ., S. 66-73.
Abstract:
The production and processing of fiber-reinforced plastics (FRP) is constantly increasing in industry. A commonly used method is resin transfer molding (RTM). FRP components are produced for large series by now. Therefore, the aspect of processing efficiency is becoming more and more important. The semi-finished product can be better exploited, for example, if large preforms were composed of single subpreforms. These subpreforms are easier to drape and can be produced within an automated line. Consequently, the necessary assembly of the subpreforms needs to be automated as well. This way, the process can be made time and resource efficient. The article that follows now will focus more closely on a concept that deals with the handling and subsequent assembling of subpreforms. Furthermore, the variables that can be adjusted for the assembly process are examined and their influence on the resulting connection quality is shown.

[ 3 ] Fleischer, J.; Dackweiler, M. & Ballier, F. (2016), „Fiber-Injection-Moulding – Herausforderungen und Chancen“, VDI-Z, S. 64-66.
Abstract:
Hohe Energiekosten und ein zunehmendes Umweltbewusstsein sowie die immer strengere Gesetzgebung forcieren den Einsatz leichter Werkstoffe zur Energie- und Ressourceneinsparung. Vor diesem Hintergrund gewinnen faserverstärkte Kunststoffe durch das besonders gute Verhältnis von Dichte zu mechanischen Eigenschaften an großer Bedeutung. Ausgangsbasis zur Herstellung dieser verstärkten Werkstoffe sind Faserpreforms*, die in einem nachfolgenden Prozessschritt mit einem Harz-Härter-Gemisch getränkt werden und zum Endbauteil aushärten. Ein vielversprechendes neues Verfahren zum verschnittfreien Endkontur-Preforming ist das Fiber-Injection-Moulding (FIM).

[ 4 ] Förster, F.; Ballier, F.; Coutandin, S.; Defranceski, A. & Fleischer, J. (2017), „Manufacturing of Textile Preforms with an Intelligent Draping and Gripping System“, Procedia CIRP, S. 39-44.
Abstract:
In this paper, a novel pixel-based draping and gripping unit will be presented. To monitor and control the draping during the forming of a stack of semi-finished textiles, the pixels are equipped with integrated sensors. With these sensors, it is possible to adjust the tangential sliding and the normal holding force at each pixel. The sensor principle is based on the electrical conductivity of carbon fibers. Electrodes inside the gripping system allow a conclusion to the gripping force between the gripper and the carbon textile. Therefore, the gripping force can be adjusted to the special boundary conditions during the draping process.