Home | english  | Impressum | Sitemap | KIT
Koch_Simon-Frederik

Dipl.-Ing. Simon-Frederik Koch

Akad. Mitarbeiter
Bereich: Maschinen, Anlagen und Prozessautomatisierung
Sprechstunden: nach Vereinbarung
Raum: 008, Geb. 50.36
Tel.: +49 721 608-46019
Fax: : +49 721 608-45005
Simon-Frederik KochIou9∂kit edu

Campus Süd



Dipl.-Ing. Simon-Frederik Koch

Forschungs- und Arbeitsgebiete:

  • Prozessentwicklung für faserverstärkte Kunststoffe: Formgebung von trockenen Fasertextilien, Flüssigimprägnierverfahren
  • Fügen von Metallen und faserverstärkten Kunststoffen sowie deren Qualitätsprüfung
  • Bauweisen und Produktionstechnologien für Elektromotoren: Schleuderverfahren, Spritzgießverfahren, Wickelverfahren
  • Struktursimulation mittels Finite-Elemente-Methode


Forschungsprojekte:

  • SPP1712 Phase 1 - Intrinsische Hybridverbunde für Leichtbautragstrukturen - Grundlagen der Fertigung, Charakterisierung und Auslegung
    • Teilprojekt 4: Modell- und Verfahrensentwicklung zur Herstellung hybrider Profile mittels Schleuderverfahren
    • Koordination des Schwerpunktprogramms​
  • ProLemo - Produktionstechnologien für effiziente Leichtbaumotoren für Elektrofahrzeug


Lebenslauf:

 

Seit 2012 Wissenschaftlicher Mitarbeiter in der Gruppe Maschinen, Anlagen und Prozessautomatisierung am wbk Institut für Produktionstechnik des Karlsruher Instituts für Technologie (KIT)
2006 – 2012 Studium des Maschinenbaus am Karlsruher Institut für Technologie (KIT)
06.04.1986 geboren in Bielefeld

Veröffentlichungen

[ 1 ] Fleischer, J.; Ochs, A. & Koch, S. (2012), „Ultrasonic-assisted adhesive handling of limp and air-permeable textile semi-finished products in composites manufacturing“. Technologies and Systems for Assembly Quality, Productivity and Customization - Proceedings, Hrsg. S. Jack Hu, S. 7-10.
Abstract:
The handling of limp and air-permeable textile semi-finished products is a huge challenge for the automated production of continuous-fiber reinforced polymers. This is why semi-finished textile products are mainly provided and fed manually. It is against this backdrop that this article begins by defining the requirements for an effective gripper system for semi-finished textile products based on the individual process steps. The state-of-the-art of the gripper systems is then evaluated according to these criteria. Based on the findings, a novel, vibration-based gripper system was set up and simulated using the Finite Element Method at the Institute of Production Science.

[ 2 ] Fleischer, J.; Bauer, J.; Koch, S. & Wagner, H. (2013), „CFK als Enabler im Werkzeugmaschinenbau“, VDI-Z, Band 7, S. 74-76.
Abstract:
Bei der spanenden Bearbeitung von Werkstücken in der Nähe einer Eigenfrequenz von Werkzeugmaschinen können schwingungsbedingte Qualitätseinbußen, z.B. durch Rattern, entstehen. Potentielle Lösungen erfordern entweder umfangreiche, kostenintensive Eingriffe in die Maschinenstruktur oder eine Reduktion der Zerspanleistung. Am wbk Institut für Produktionstechnik wird daher ein Ansatz entwickelt, mit dem die Eigenfrequenzen der Maschine aktiv und variabel eingestellt werden können. Hierzu soll ein Schlitten aus CFK realisiert werden, der im Innern aus Kammern aufgebaut ist.

[ 3 ] Koch, S.; Bauer, J.; Horsch, J.; Wagner, H. & Fleischer, J. (2013), „Maschinenkomponenten mit adaptierbarer Eigenfrequenz“, ZWF Zeitschrift für wirtschaftlichen Fabrikbetrieb, Band 7, S. 487-491.
Abstract:
Am wbk Institut für Produktionstechnik wurde ein innovativer Leichtbau-Schlitten für Werkzeugmaschinen aufgebaut. Dieser zeichnet sich durch eine flexibel befüllbare Kammernbauweise aus. Anhand von experimentellen Modalanalysen konnte nachgewiesen werden, dass durch die Kammernbefüllung die Eigenfrequenzen des Schlittens variabel verschoben werden können. In neuesten Untersuchungen fand ein Abgleich der Messungen mittels Finite-Element-Simulationen statt und Modellansätze für die Fluidbefüllung wurden validiert.

[ 4 ] Koch, S. (2013), „Hybrider Leichtbau: Herausforderung für die Produktionstechnik“. -, Hrsg. IHK-Technologie-Akademie Mittelstand, S. 1-26.
Abstract:
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- Kein Abstract vorhanden -------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

[ 5 ] Fleischer, J. & Koch, S. (2014), „Rotational molding of hollow, hybrid fiber reinforced plastic-metal structures“. Euro Hybrid Materials and Structures 2014 - Plenary Lecture, Hrsg. -, S. 1-43.
Abstract:
The manufacturing of light-weight shafts, pipes and profiles is often utilizing hollow structures made from fiber reinforced plastic (FRP) due to the better density related properties. For applications with a locally high functional density the use of FRP is not yielding in proper results. In terms of light-weight construction for these applications a hybrid design with a hollow FRP basic structure and local metallic elements in areas of high functional density is optimal. A promising approach for the production of these parts is the centrifugal process. The centrifugal process for FRP-metal-profiles is understood as a manufacturing process, where machined, metallic elements and a dry continuous fiber structures will be assembled and be laid in a closed mold. Afterwards liquid matrix will be casted and the mold is put under rotation with high speed, until the fiber structure is fully impregnated and the matrix is cured. As there are short flow paths, this process is offering the potential to realize short cycle times of few minutes. After a short introduction into the state of art for hybrid shafts and pipes, this lecture presents the manufacturing basics of the centrifugal process for hybrids as well as basic design rules for centrifuged FRP parts. Apart from the established machine technology, the principle of matrix flow during centrifuging will be described. It is allowing users to calculate the duration of the process and thus being able to choose a resin-hardener-system with a convenient time-temperature cycle. Furthermore the use of additional centrifugal cores is shown, which is offering the production of hollow parts with non-circular cross section. The presentation ends with a conclusion and an outlook about the potential of this process and the upcoming research projects.

[ 6 ] Koch, S.; Bauer, J.; Wagner, H.; Horsch, J.; Brecht, S. & Fleischer, J. (2014), „Characterization of an eigenfrequency adaptable machine tool carriage“. Procedia CIRP - 6th CIRP International Conference on High Performance Cutting, HPC2014, Hrsg. Dornfeld, D. & Helu, M., Elsevier B.V., S. 412-417.
Abstract:
Current machine tools feature fixed eigenfrequencies which are often excited by high performance cutting operations leading to unfavorable process conditions or poor workpiece quality, for example, due to chatter. Approaches to resolve this problem either constitute in changes of the process conditions, adaptable auxiliary mass dampers or vast and expensive changes within the machine tool structure. All of these approaches are either expensive, lead to a lower cutting ability or do not address the underlying problem. A novel approach to avoid chatter is described in this paper. It deals with a frequency adaptable machine tool carriage made out of hollow carbon fiber reinforced plastic (CFRP) profiles. This light structure enables chambers to be filled separately. This allows a tuning of the eigenfrequencies by pumping fluid into the chambers of the carriage reducing the eigenfrequencies. The CFRP structure has a high added mass to component mass ratio due to the high stiffness in relation to the density of the CFRP. Thus shifting the eigenfrequencies on a larger scale in comparison to the carriages of the same kind but made out of steel or cast iron.

Within this paper, the approach as well as measurement results of the prototypical realization will be presented. The paper will address measurements of sloshing, the influence of added fluid mass regarding different filling levels and the influence of the control behavior of the feed axis. The paper shall conclude with a comparison of the measurements to a similar machine tool carriage made out of steel. In the end, an outlook on upcoming research topics and activities shall be given.

[ 7 ] Fleischer, J.; Koch, S. & Coutandin, S. (2015), „Manufacturing of polygon fiber reinforced plastic profiles by rotational molding and intrinsic hybridization “, Prod. Eng. Res. Devel. , Band 9, Nr. 3, S. 317-328.
Abstract:
The manufacturing of lightweight shafts, pipes and profiles often uses hollow structures made from fiber reinforced plastics (FRP) due to their better density related properties. For applications with locally high tribological stresses, the use of FRP is not yielding proper results. In terms of lightweight construction, a hybrid design with a hollow FRP basic structure and local metallic elements in areas of high tribological stress is ideal for these applications. A promising approach for the production of these parts is rotational molding. Rotational molding for FRP– metal profiles is understood as a manufacturing process where machined, metallic elements and dry continuous fiber structures will be assembled and laid in a closed mold. Afterwards, the liquid matrix will be casted and the mold is then rotated at high speed until the fiber structure is fully impregnated and the matrix is cured. As there are short flow paths, this process is offering the potential to realize short cycle times of only a few minutes. Within this paper, the manufacturing of polygon profiles via rotational molding is described. These profiles can be produced by using centrifugal cores which were developed at the wbk Institute of Production Science. These cores are made of an elastomer composite material and they expand during the rotational molding process. The modeling of these cores and their impact on the impregnation pressure is shown here as well as their contribution in achieving higher fiber volume fractions.

[ 8 ] Koch, S.; Dackweiler, M.; Pottmeyer, F. & Fleischer, J. (2015), „Intrinsische Hybridisierung im Schleuderverfahren“, Lightweight Design, Band 4, S. 12-18.
Abstract:
Unter dem Schleuderverfahren für Faserverbund-Metall-Wellen oder -profile wird ein Fertigungsprozess verstanden, bei dem spanend bearbeitete, metallische Elemente mit einer trockenen Endlosfaserstruktur (Preform) vormontiert und in eine geschlossene Werkzeugform eingelegt werden. Anschließend wird flüssige Matrix eingegossen und das Werkzeug solange unter hoher Drehzahl rotiert, bis die Faserstruktur vollständig imprägniert und die Matrix ausgehärtet ist. Die intrinsische Hybridisierung ermöglicht eine formschlüssige Kraftübertragung mit Hinterschneidungen zwischen Metall und Faserverbund, die normalerweise nicht montierbar sind. Dadurch sollen besonders hohe Lasten übertragen werden können. Dieses Verfahren bietet, aufgrund der vergleichsweise kurzen Fließwege, die Möglichkeit kurze Taktzeiten von wenigen Minuten zu realisieren.

[ 9 ] Fleischer, J.; Koch, S. & Ruhland, P. (2016), „Rotational Molding of Fiber Reinforced Plastics with Elastic Composite Core“. Resource Efficiency for Global Competitiveness, Hrsg. Dimitrov, D. & Oosthuizen, T., S. 181-186.
Abstract:
The rotational molding with an elastic composite core is an interesting process for the manufacturing of fiber reinforced plastics (FRP) with polygon cross-section. The polygon shape can be used for an in-mould-assembly of FRP and metal structures. On this way a load transmission with combined form-fit and adhesive bonding can be realized. Those hybrid parts are a suitable lightweight solution for shafts, pipes and profiles. The processing via rotational molding with composite core can be carried out as follows: First dry continuous fiber structures and the elastic composite core are assembled and then laid in a closed mold. Subsequently, liquid thermosetting resin is cast and the mold is rotated at high speed. During rotation the composite cores expands and pushes the matrix into the areas that normally, without the composite core, would not be impregnated. The rotation is continued until the fiber structure is fully impregnated and the polymer is cured. Within this paper, the manufacturing of polygon profiles with an elastic composite core is described. An analytic approach is introduced, which enables an ideal design and material choice of the elastic composite core and the achievement of high fiber volume fractions for fiber reinforced plastic hollow structures. Furthermore the manufacturing of elastic cores are depicted.

[ 10 ] Koch, S.; Barfuss, D.; Bobbert, M.; Groß, L.; Grützner, R.; Riemer, M.; Stefaniak, D. & Wang, Z. (2016), „Intrinsic Hybrid Composites for Lightweight Structures: New Process Chain Approaches“. WGP Congress 2016: Progress in Production Engineering, Hrsg. Wulfsberg, J. P.; Fette, M.; Montag, T. & Trans Tech Publications, T. T. P., S. 239-246.
Abstract:
This publication describes new process chain approaches for the manufacturing of intrinsic hybrid composites for lightweight structures. The introduced process chains show a variety of different part and sample types, like insert technology for fastening of hollow hybrid shafts and profiles. Another field of research are hybrid laminates with different layers of carbon fiber reinforced plastics stacked with aluminum or steel sheets. The derived process chains base on automated fiber placement, resin transfer molding, deep drawing, rotational molding and integral tube blow molding.

[ 11 ] Wang, Z.; Riemer, M.; Koch, S.; Barfuss, D.; Grützner, R.; Augenthaler, F. & Schwennen, J. (2016), „Intrinsic Hybrid Composites for Lightweight Structures: Tooling Technologies“. WGP Congress 2016: Progress in Production Engineering, Hrsg. Wulfsberg, J. P.; Fette, M.; Montag, T. & Trans Tech Publications, T. T. P., S. 247-254.
Abstract:
The increasing use of hybrid materials requires efficient manufacturing processes. With the concept of the intrinsic hybrids the shaping or forming of the part is combined with the hybridization in the same process step and thereby the same tool. Hence new tooling concepts, which realise the process requirements, are necessary. This paper describes tooling concepts and design methods for the manufacturing of intrinsic hybrid parts. Different solutions for rotational and planar parts with thermosetting or thermoplastic matrix material are presented. Additionally the integration of inserts in such tools is discussed. Finally the main challenges for the design of tools for intrinsic hybrids will be presented.

[ 12 ] Koch, S.; Peter, M. & Fleischer, J. (2017), „Lightweight Design and Manufacturing of Composites for High-performance Electric Motors “, Procedia CIRP, Band 66, S. 283-288. https://doi.org/10.1016/j.procir.2017.03.274 [06.06.17].
Abstract:
The global demand for carbon saving and green mobility is changing propulsion systems from combustion engines to electric motors. Today, battery capacities are still low and the range of automotive vehicles needs to be improved. In this context, high-performance electric motors of high energy efficiency as well as low weight are gaining in importance. In the present paper, two approaches for reducing weight of electric motor rotors shall be presented. First, a lightweight approach comprising of a hybrid shaft made of carbon reinforced plastic and stainless steel shall be outlined. It is manufactured by a novel process chain where dry filament winding is combined with centrifugal casting. The steel inlays are joined in-mold during centrifugal casting. The second approach shall demonstrate the replacement of electric sheets by soft magnetic compounds (SMC, iron filled polyamide compound). These SMC parts are produced in an innovative two-component injection molding process. The paper concludes with a concept for the assembly of the hybrid shaft with the SMC parts and the mechanical testing of the assembled lightweight rotor.